Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Membrane type-1 matrix metalloproteinase stimulates tumour cell-induced platelet aggregation: role of receptor glycoproteins.

  • David Alonso-Escolano‎ et al.
  • British journal of pharmacology‎
  • 2004‎

1. Matrix metalloproteinase-2 (MMP-2) plays a role in agonist- and tumour cell-induced platelet aggregation (TCIPA). 2. MMP-2 is synthesized as a proenzyme and is activated at the cell surface by membrane type-1 matrix metalloproteinase (MT1-MMP, MMP-14). 3. The significance of tumour cell-associated MT1-MMP for TCIPA was investigated using human breast carcinoma MCF7 cells stably coexpressing the integrin alphavbeta3 with MT1-MMP, cells expressing alphavbeta3 alone and mock-transfected cells. 4. Western blot and zymography confirmed that alphavbeta3/MT1-MMP cells expressed MT1-MMP and efficiently processed proMMP-2 to MMP-2. 5. Aggregometry, phase-contrast and transmission electron microscopy and flow cytometry were used to characterize TCIPA induced by MCF7 cell lines. 6. The aggregating potency of cells was: alphavbeta3/MT1-MMP >alphavbeta3=mock cells, as shown by aggregometry and phase-contrast microscopy. 7. Electron microscopy revealed close, membrane-membrane interactions between activated platelets and alphavbeta3/MT1-MMP cells during TCIPA. 8. Inhibition of MMP-2 with the neutralizing anti-MMP-2 antibody (5 microg ml(-1)) and o-phenanthroline (100 microm) reduced aggregation induced by alphavbeta3/MT1-MMP cells. 9. TCIPA induced by alphavbeta3/MT1-MMP cells was also reduced by inhibiting the generation and actions of ADP with apyrase (250 microg ml(-1)) and 2-methylthio-AMP (2-MeSAMP) (30 microm), but not N(6)-methyl-2'-deoxyadenosine-3',5'-bisphosphate (MRS2179) (30 microm). 10. Flow cytometry demonstrated that TCIPA enhanced expression of glycoprotein (GP) Ib and IIb/IIIa receptors not only on platelets but also on breast cancer cells. 11. Thus, (a) human breast carcinoma cell surface-associated MT1-MMP, via activating proMMP-2, stimulates TCIPA; (b) ADP amplifies the effects of MMPs via stimulation of P2Y(12) receptors and (c) both tumour- and platelet-derived GPIb and GPIIb/IIIa are involved in the aggregatory effects of MT1-MMP.


Association of Platelet Membrane Glycoprotein HPA-2a/b, GP VI T13254C, and GP Ibα VNTR Polymorphisms with Risk of Coronary Artery Disease: A Meta-Analysis.

  • Wei Ni‎ et al.
  • BioMed research international‎
  • 2017‎

Recently, controversial results have been reported regarding the association of the polymorphisms of platelet membrane glycoproteins (HPA-2a/b, GP VI T13254C, and GP Ibα VNTR) with coronary artery disease (CAD). We performed this meta-analysis to further assess the polymorphisms of platelet membrane glycoproteins with a risk of CAD.


Glycoprotein IIb/IIIa and P2Y12 induction by oligochitosan accelerates platelet aggregation.

  • Mercy Halleluyah Periayah‎ et al.
  • BioMed research international‎
  • 2014‎

Platelet membrane receptor glycoprotein IIb/IIIa (gpiibiiia) is a receptor detected on platelets. Adenosine diphosphate (ADP) activates gpiibiiia and P2Y12, causing platelet aggregation and thrombus stabilization during blood loss. Chitosan biomaterials were found to promote surface induced hemostasis and were capable of activating blood coagulation cascades by enhancing platelet aggregation. Our current findings show that the activation of the gpiibiiia complex and the major ADP receptor P2Y12 is required for platelet aggregation to reach hemostasis following the adherence of various concentrations of chitosan biomaterials [7% N,O-carboxymethylchitosan (NO-CMC) with 0.45 mL collagen, 8% NO-CMC, oligochitosan (O-C), and oligochitosan 53 (O-C 53)]. We studied gpiibiiia and P2Y12 through flow cytometric analysis and western blotting techniques. The highest expression of gpiibiiia was observed with Lyostypt (74.3 ± 7.82%), followed by O-C (65.5 ± 7.17%). Lyostypt and O-C resulted in gpiibiiia expression increases of 29.2% and 13.9%, respectively, compared with blood alone. Western blot analysis revealed that only O-C 53 upregulated the expression of P2Y12 (1.12 ± 0.03-fold) compared with blood alone. Our findings suggest that the regulation of gpiibiiia and P2Y12 levels could be clinically useful to activate platelets to reach hemostasis. Further, we show that the novel oligochitosan is able to induce the increased expression of gpiibiiia and P2Y12, thus accelerating platelet aggregation in vitro.


Suppressive effect of CORM-2 on LPS-induced platelet activation by glycoprotein mediated HS1 phosphorylation interference.

  • Dadong Liu‎ et al.
  • PloS one‎
  • 2013‎

In recent years, it has been discovered that septic patients display coagulation abnormalities. Platelets play a major role in the coagulation system. Studies have confirmed that carbon monoxide (CO) has important cytoprotective and anti-inflammatory function. However, whether CO could alter abnormal activation of platelets and coagulation and thereby reduce the incidence of mortality during sepsis has not been defined. In this report, we have used CO-releasing molecules (CORM-2) to determine whether CO inhibits LPS-induced abnormal activation of platelets and have explored the potential mechanisms. LPS was used to induce activation of platelets in vitro, which were purified from the peripheral venous blood of healthy adult donors. CORM-2 was applied as a potential therapeutic agent. CORM-2 preconditioning and delayed treatment were also studied. We found that in the LPS groups, the function of platelets such as spreading, aggregation, and release were enhanced abnormally. By contrast, the platelets in the CORM-2 group were gently activated. Further studies showed that the expression of platelet membrane glycoproteins increased in the LPS group. Coincidently, both hematopoietic lineage cell-specific protein 1 and its phosphorylated form also increased dramatically. These phenomena were less dramatically seen in the CORM-2 groups. Taken together, we conclude that during LPS stimulation, platelets were abnormally activated, and this functional state may be associated with the signal that is transmitted between membrane glycoproteins and HS1. CORM-released CO suppresses the abnormal activation of platelets by interfering with glycoprotein-mediated HS1 phosphorylation.


Molecular insight into human platelet antigens: structural and evolutionary conservation analyses offer new perspective to immunogenic disorders.

  • Meytal Landau‎ et al.
  • Transfusion‎
  • 2011‎

Human platelet antigens (HPAs) are polymorphisms in platelet membrane glycoproteins (GPs) that can stimulate production of alloantibodies once exposed to foreign platelets (PLTs) with different HPAs. These antibodies can cause neonatal alloimmune thrombocytopenia, posttransfusion purpura, and PLT transfusion refractoriness. Most HPAs are localized on the main PLT receptors: 1) integrin αIIbβ3, known as the fibrinogen receptor; 2) the GPIb-IX-V complex that functions as the receptor for von Willebrand factor; and 3) integrin α2β1, which functions as the collagen receptor.


Platelet-derived extracellular vesicles are increased in sera of Alzheimer's disease patients, as revealed by Tim4-based assays.

  • Haruki Odaka‎ et al.
  • FEBS open bio‎
  • 2021‎

Alzheimer's disease (AD) is the most common form of dementia, characterized by the accumulation of β-amyloid plaques and the formation of neurofibrillary tangles. Extracellular vesicles (EVs) are small vesicles surrounded by a lipid bilayer membrane, which may be involved in the progression of AD. Glycans are essential building blocks of EVs, and we hypothesized that EV glycans may reflect pathological conditions of various diseases. Here, we performed glycan profiling of EVs prepared from sera of three AD patients (APs) compared to three healthy donors (HDs) using lectin microarray. Distinct glycan profiles were observed. Mannose-binding lectins exhibited significantly higher signals for AP-derived EVs than HD-derived EVs. Lectin blotting using mannose-binding lectin (rPALa) showed a single protein band at ~ 80 kDa exclusively in AP-derived EVs. LC-MS/MS analysis identified a protein band precipitated by rPALa as CD61, a marker of platelet-derived exosomes (P-Exo). Sandwich assays using Tim4 with specificity for phosphatidylserine on EVs and antibodies against P-Exo markers (CD61, CD41, CD63, and CD9) revealed that P-Exo is significantly elevated in sera of APs (n = 16) relative to age- and sex-matched HDs (n = 16). Tim4-αCD63 showed the highest value for the area under the curve (0.957) for discriminating APs from HDs, which should lead to a better understanding of AD pathology and may facilitate the development of a novel diagnostic method for AD.


Suppressive effect of exogenous carbon monoxide on endotoxin-stimulated platelet over-activation via the glycoprotein-mediated PI3K-Akt-GSK3β pathway.

  • Dadong Liu‎ et al.
  • Scientific reports‎
  • 2016‎

Platelet activation is an important event involved in the pathophysiological processes of the coagulation system. Clinical evidence has shown that platelets undergo distinctive pathological processes during sepsis. Unfortunately, how platelets physiologically respond to inflammation or sepsis is not well understood. In this study, we used a lipopolysaccharide (LPS)-stimulated platelet model to systemically investigate alterations in membrane glycoprotein expression, molecular signaling, morphology and critical functions of platelets. We found that platelet adhesion, aggregation, secretion, and spreading on immobilized fibrinogen and the expression of platelet membrane glycoproteins were significantly increased by LPS stimulation, and these changes were accompanied by a significant decrease in cGMP levels and an abnormal distribution of platelet α-granules. Exogenous CO reversed these alterations. Profound morphological changes in LPS-stimulated platelets were observed using atomic force microscopy and phase microscopy. Furthermore, the elevated activities of PI3Ks, AKt and GSK-3β were effectively suppressed by exogenous CO, leading to the improvement of platelet function. Together, these results provide evidence that platelet over-activation persists under LPS-stimulation and that exogenous CO plays an important role in suppressing platelet activation via the glycoprotein-mediated PI3K-Akt-GSK3β pathway.


Effective components of Panax quinquefolius and Corydalis tuber protect the myocardium by inhibiting platelet activation and improving the hypercoagulable state.

  • Mei Xue‎ et al.
  • Experimental and therapeutic medicine‎
  • 2015‎

The aim of the present study was to investigate the effects of extract of Panax quinquefolius and Corydalis tuber (EPC) on platelet activation and the hypercoagulable state in rats with acute myocardial infarction (AMI). The MI model in Wistar rats was induced by coronary artery ligation. Sham surgery was performed as a control. The surviving rats that underwent MI surgery were divided into control (administered normal saline), metoprolol (9 mg/kg) and low-, moderate- and high-dose EPC groups (0.54, 1.08 g/kg and 2.16 g/kg, respectively). Saline, metoprolol and EPC were administered by gastrogavage for two consecutive weeks. The morphological changes of the myocardium were assessed by hematoxylin and eosin and nitroblue tetrazolium staining. Serum von Willebrand factor (vWF), D-dimer (DD), platelet membrane glycoproteins IIb-IIIa (GPIIb-IIIa) and CD62P levels were assessed using enzyme-linked immunosorbent assay. EPC attenuated the pathological changes of the myocardium. High-dose EPC decreased the serum concentration of vWF when compared with control group. Moderate and high doses of EPC decreased the DD and GPIIb-IIIa levels, and the CD62P level was gradually decreased with EPC dose escalation. The results therefore demonstrated that EPC protects the myocardium by inhibiting platelet activation and improving the hypercoagulable state in a rat model of AMI.


Novel method for simultaneously detecting HPA and HLA antibodies using Luminex microbeads.

  • Sudan Tao‎ et al.
  • Journal of translational medicine‎
  • 2019‎

Alloantibodies against human platelet antigens (HPAs) and human leukocyte antigen (HLA) are implicated in several immune-mediated platelet disorders. Detection of these antibodies is crucial in the diagnosis and management of these disorders. The aim of this study was to establish a novel method to simultaneously detect HPA-1, HPA-2, HPA-3, HPA-5 and HLA antibodies with Luminex microbeads technology.


Biomarkers involved in evaluation of platelets function in South-Eastern Romanian patients with hematological malignancies subtypes.

  • Elena Matei‎ et al.
  • Medicine‎
  • 2021‎

At present, various researches presented how subtypes of hematological malignancies are related to stages of the immune response, because the activated immune system represents a promising form in cancer treatment. This study explores the relationship between the adaptive immune system (T cells), and the coagulation system (platelets, platelet membrane glycoproteins, platelets derivate microparticles) which seems to play an important role in host immune defense of patients with acute myeloblastic leukemia (AML) or B cell lymphoma (BCL), 2 of the most common hematological malignancies subtypes.Blood samples (n = 114) obtained from patients with AML or BCL were analyzed for platelet membrane glycoproteins (CD42b, CD61), glycoprotein found on the surface of the T helper cells (CD4+), protein complex-specific antigen for T cells (CD3+), platelet-derived microparticles (CD61 PMP) biomarkers by flow cytometry, and hematological parameters were quantified by usual methods.In patients with AML, the means of the percentage of the expressions of the molecules on platelet surfaces (CD61 and CD42b, P < .01; paired T test) were lower as compared to both control subgroups. The expression of cytoplasmic granules content (CD61 PMP) had a significantly higher value in patients with AML reported to controlling subgroups (P < .01; paired T test), which is suggesting an intravascular activation of platelets.The platelet activation status was presented in patients with low stage BCL because CD61 and CD42b expressions were significantly higher than control subgroups, but the expression of CD 61 PMP had a significantly decreased value reported to control subgroups (all P < .01; paired T test). T helper/inducer lineage CD4+ and T lymphoid lineage CD3+ expressions presented significant differences between patients with AML or low stage BCL reported to control subgroups (all P < .01; paired T test).Platelet-lymphocyte interactions are involved in malignant disorders, and CD61, CD42b present on platelet membranes, as functionally active surface receptors mediate the adhesion of active platelets to lymphocytes, endothelial cells, and cancer cells.


Study of Clinical and Genetic Risk Factors for Aspirin-induced Gastric Mucosal Injury.

  • Yun Wu‎ et al.
  • Chinese medical journal‎
  • 2016‎

Current knowledge about clinical and genetic risk factors for aspirin-induced gastric mucosal injury is not sufficient to prevent these gastric mucosal lesions.


Neuraminidase-1, a subunit of the cell surface elastin receptor, desialylates and functionally inactivates adjacent receptors interacting with the mitogenic growth factors PDGF-BB and IGF-2.

  • Aleksander Hinek‎ et al.
  • The American journal of pathology‎
  • 2008‎

We recently established that the elastin-binding protein, which is identical to the spliced variant of beta-galactosidase, forms a cell surface-targeted complex with two proteins considered "classic lysosomal enzymes": protective protein/cathepsin A and neuraminidase-1 (Neu1). We also found that cell surface-residing Neu1 can desialylate neighboring microfibrillar glycoproteins and facilitate the deposition of insoluble elastin, which contributes to the maintenance of cellular quiescence. Here we provide evidence that cell surface-residing Neu1 contributes to a novel mechanism that limits cellular proliferation by desialylating cell membrane-residing sialoglycoproteins that directly propagate mitogenic signals. We demonstrated that treatment of cultured human aortic smooth muscle cells (SMCs) with either a sialidase inhibitor or an antibody that blocks Neu1 activity induced significant up-regulation in SMC proliferation in response to fetal bovine serum. Conversely, treatment with Clostridium perfringens neuraminidase (which is highly homologous to Neu1) decreased SMC proliferation, even in cultures that did not deposit elastin. Further, we found that pretreatment of aortic SMCs with exogenous neuraminidase abolished their mitogenic responses to recombinant platelet-derived growth factor (PDGF)-BB and insulin-like growth factor (IGF)-2 and that sialidosis fibroblasts (which are exclusively deficient in Neu1) were more responsive to PDGF-BB and IGF-2 compared with normal fibroblasts. Furthermore, we provide direct evidence that neuraminidase caused the desialylation of both PDGF and IGF-1 receptors and diminished the intracellular signals induced by the mitogenic ligands PDGF-BB and IGF-2.


Tyrosine phosphorylation at a site highly conserved in the L1 family of cell adhesion molecules abolishes ankyrin binding and increases lateral mobility of neurofascin.

  • T D Garver‎ et al.
  • The Journal of cell biology‎
  • 1997‎

This paper presents evidence that a member of the L1 family of ankyrin-binding cell adhesion molecules is a substrate for protein tyrosine kinase(s) and phosphatase(s), identifies the highly conserved FIGQY tyrosine in the cytoplasmic domain as the principal site of phosphorylation, and demonstrates that phosphorylation of the FIGQY tyrosine abolishes ankyrin-binding activity. Neurofascin expressed in neuroblastoma cells is subject to tyrosine phosphorylation after activation of tyrosine kinases by NGF or bFGF or inactivation of tyrosine phosphatases with vanadate or dephostatin. Furthermore, both neurofascin and the related molecule Nr-CAM are tyrosine phosphorylated in a developmentally regulated pattern in rat brain. The FIGQY sequence is present in the cytoplasmic domains of all members of the L1 family of neural cell adhesion molecules. Phosphorylation of the FIGQY tyrosine abolishes ankyrin binding, as determined by coimmunoprecipitation of endogenous ankyrin and in vitro ankyrin-binding assays. Measurements of fluorescence recovery after photobleaching demonstrate that phosphorylation of the FIGQY tyrosine also increases lateral mobility of neurofascin expressed in neuroblastoma cells to the same extent as removal of the cytoplasmic domain. Ankyrin binding, therefore, appears to regulate the dynamic behavior of neurofascin and is the target for regulation by tyrosine phosphorylation in response to external signals. These findings suggest that tyrosine phosphorylation at the FIGQY site represents a highly conserved mechanism, used by the entire class of L1-related cell adhesion molecules, for regulation of ankyrin-dependent connections to the spectrin skeleton.


Aorta in Pathologies May Function as an Immune Organ by Upregulating Secretomes for Immune and Vascular Cell Activation, Differentiation and Trans-Differentiation-Early Secretomes may Serve as Drivers for Trained Immunity.

  • Yifan Lu‎ et al.
  • Frontiers in immunology‎
  • 2022‎

To determine whether aorta becomes immune organ in pathologies, we performed transcriptomic analyses of six types of secretomic genes (SGs) in aorta and vascular cells and made the following findings: 1) 53.7% out of 21,306 human protein genes are classified into six secretomes, namely, canonical, caspase 1, caspase 4, exosome, Weibel-Palade body, and autophagy; 2) Atherosclerosis (AS), chronic kidney disease (CKD) and abdominal aortic aneurysm (AAA) modulate six secretomes in aortas; and Middle East Respiratory Syndrome Coronavirus (MERS-CoV, COVID-19 homologous) infected endothelial cells (ECs) and angiotensin-II (Ang-II) treated vascular smooth muscle cells (VSMCs) modulate six secretomes; 3) AS aortas upregulate T and B cell immune SGs; CKD aortas upregulate SGs for cardiac hypertrophy, and hepatic fibrosis; and AAA aorta upregulate SGs for neuromuscular signaling and protein catabolism; 4) Ang-II induced AAA, canonical, caspase 4, and exosome SGs have two expression peaks of high (day 7)-low (day 14)-high (day 28) patterns; 5) Elastase induced AAA aortas have more inflammatory/immune pathways than that of Ang-II induced AAA aortas; 6) Most disease-upregulated cytokines in aorta may be secreted via canonical and exosome secretomes; 7) Canonical and caspase 1 SGs play roles at early MERS-CoV infected ECs whereas caspase 4 and exosome SGs play roles in late/chronic phases; and the early upregulated canonical and caspase 1 SGs may function as drivers for trained immunity (innate immune memory); 8) Venous ECs from arteriovenous fistula (AVF) upregulate SGs in five secretomes; and 9) Increased some of 101 trained immunity genes and decreased trained tolerance regulator IRG1 participate in upregulations of SGs in atherosclerotic, Ang-II induced AAA and CKD aortas, and MERS-CoV infected ECs, but less in SGs upregulated in AVF ECs. IL-1 family cytokines, HIF1α, SET7 and mTOR, ROS regulators NRF2 and NOX2 partially regulate trained immunity genes; and NRF2 plays roles in downregulating SGs more than that of NOX2 in upregulating SGs. These results provide novel insights on the roles of aorta as immune organ in upregulating secretomes and driving immune and vascular cell differentiations in COVID-19, cardiovascular diseases, inflammations, transplantations, autoimmune diseases and cancers.


Role of AP1 and Gadkin in the traffic of secretory endo-lysosomes.

  • Karine Laulagnier‎ et al.
  • Molecular biology of the cell‎
  • 2011‎

Whereas lysosome-related organelles (LRO) of specialized cells display both exocytic and endocytic features, lysosomes in nonspecialized cells can also acquire the property to fuse with the plasma membrane upon an acute rise in cytosolic calcium. Here, we characterize this unconventional secretory pathway in fibroblast-like cells, by monitoring the appearance of Lamp1 on the plasma membrane and the release of lysosomal enzymes into the medium. After sequential ablation of endocytic compartments in living cells, we find that donor membranes primarily derive from a late compartment, but that an early compartment is also involved. Strikingly, this endo-secretory process is not affected by treatments that inhibit endosome dynamics (microtubule depolymerization, cholesterol accumulation, overexpression of Rab7 or its effector Rab-interacting lysosomal protein [RILP], overexpression of Rab5 mutants), but depends on Rab27a, a GTPase involved in LRO secretion, and is controlled by F-actin. Moreover, we find that this unconventional endo-secretory pathway requires the adaptor protein complexes AP1, Gadkin (which recruits AP1 by binding to the γ1 subunit), and AP2, but not AP3. We conclude that a specific fraction of the AP2-derived endocytic pathway is dedicated to secretory purposes under the control of AP1 and Gadkin.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: