Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Chlorin e6 Prevents ADP-Induced Platelet Aggregation by Decreasing PI3K-Akt Phosphorylation and Promoting cAMP Production.

  • Ji Young Park‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2013‎

A number of reagents that prevent thrombosis have been developed but were found to have serious side effects. Therefore, we sought to identify complementary and alternative medicinal materials that are safe and have long-term efficacy. In the present studies, we have assessed the ability of chlorine e6 (CE6) to inhibit ADP-induced aggregation of rat platelets and elucidated the underlying mechanism. CE6 inhibited platelet aggregation induced by 10 µM ADP in a concentration-dependent manner and decreased intracellular calcium mobilization and granule secretion (i.e., ATP and serotonin release). Western blotting revealed that CE6 strongly inhibited the phosphorylations of PI3K, Akt, c-Jun N-terminal kinase (JNK), and different mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinase 1/2 (ERK1/2) as well as p38-MAPK. Our study also demonstrated that CE6 significantly elevated intracellular cAMP levels and decreased thromboxane A2 formation in a concentration-dependent manner. Furthermore, we determined that CE6 initiated the activation of PKA, an effector of cAMP. Taken together, our findings indicate that CE6 may inhibit ADP-induced platelet activation by elevating cAMP levels and suppressing PI3K/Akt activity. Finally, these results suggest that CE6 could be developed as therapeutic agent that helps prevent thrombosis and ischemia.


The inhibitory mechanism of crude saponin fraction from Korean Red Ginseng in collagen-induced platelet aggregation.

  • Bo Ra Jeon‎ et al.
  • Journal of ginseng research‎
  • 2015‎

Korean Red Ginseng has been used as a traditional oriental medicine to treat illness and to promote health for several thousand years in Eastern Asia. It is widely accepted that ginseng saponins, ginsenosides, are the major active ingredients responsible for Korean Red Ginseng's therapeutic activity against many kinds of illness. Although the crude saponin fraction (CSF) displayed antiplatelet activity, the molecular mechanism of its action remains to be elucidated.


Schisandra chinensis and Morus alba Synergistically Inhibit In Vivo Thrombus Formation and Platelet Aggregation by Impairing the Glycoprotein VI Pathway.

  • Dong-Seon Kim‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2017‎

Morus alba L. (MAL) extract has been used in traditional medicine for its cardioprotective and antiplatelet effects, while another herbal remedy, Schisandra chinensis (SCC), has been reported to have anti-inflammatory and antioxidant properties. We evaluated underlying cellular changes exerted by extracts of these plants on platelet function and effects of SCC + MAL on in vivo thrombus formation using AV shunt and tail thrombosis-length models in rats. In vitro platelet aggregation, granule secretion, and [Ca2+] i release assays were carried out. The activation of integrin αIIbβ3 and phosphorylation of downstream signaling molecules, including MAPK and Akt, were investigated using cytometry and immunoblotting, respectively. Scanning electron microscopy (SEM) was used to evaluate changes in platelet shape and HPLC analysis was carried out to identify the marker compounds in SCC + MAL mixture. In vivo thrombus weight and average length of tail thrombosis were significantly decreased by SCC + MAL. In vitro platelet aggregation, granule secretion, [Ca2+] i release, and integrin αIIbβ3 activation were notably inhibited. SCC + MAL markedly reduced the phosphorylation of MAPK pathway factors along with Akt. HPLC analysis identified four marker compounds: isoquercitrin, astragalin, schizandrol A, and gomisin A. The extracts exerted remarkable synergistic effects as natural antithrombotic and antiplatelet agent and a potent drug candidate for treating cardiovascular diseases.


Inhibitory effects of total saponin from Korean red ginseng via vasodilator-stimulated phosphoprotein-Ser(157) phosphorylation on thrombin-induced platelet aggregation.

  • Dong-Ha Lee‎ et al.
  • Journal of ginseng research‎
  • 2013‎

In this study, we have investigated the effects of total saponin from Korean red ginseng (TSKRG) on thrombin-induced platelet aggregation. TSKRG dose-dependently inhibited thrombin-induced platelet aggregation with IC50 value of about 81.1 μg/mL. In addition, TSKRG dose-dependently decreased thrombin-elevated the level of cytosolic-free Ca(2+) ([Ca(2+)]i), one of aggregation-inducing molecules. Of two Ca(2+)-antagonistic cyclic nucleotides as aggregation-inhibiting molecules, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), TSKRG significantly dose-dependently elevated intracellular level of cAMP, but not cGMP. In addition, TSKRG dose-dependently inhibited thrombin-elevated adenosine triphosphate (ATP) release from platelets. These results suggest that the suppression of [Ca(2+)]i elevation, and of ATP release by TSKRG are associated with upregulation of cAMP. TSKRG elevated the phosphorylation of vasodilator-stimulated phosphoprotein (VASP)-Ser(157), a cAMP-dependent protein kinase (A-kinase) substrate, but not the phosphorylation of VASP-Ser(239), a cGMPdependent protein kinase substrate, in thrombin-activated platelets. We demonstrate that TSKRG involves in increase of cAMP level and subsequent elevation of VASP-Ser(157) phosphorylation through A-kinase activation to inhibit [Ca(2+)]i mobilization and ATP release in thrombin-induced platelet aggregation. These results strongly indicate that TSKRG is a beneficial herbal substance elevating cAMP level in thrombin-platelet interaction, which may result in preventing of platelet aggregation-mediated thrombotic diseases.


DK-MGAR101, an extract of adventitious roots of mountain ginseng, improves blood circulation by inhibiting endothelial cell injury, platelet aggregation, and thrombus formation.

  • Hye Rim Seong‎ et al.
  • Journal of ginseng research‎
  • 2022‎

Since ginsenosides exert an anti-thrombotic activity, blood flow-improving effects of DK-MGAR101, an extract of mountain ginseng adventitious roots (MGAR) containing various ginsenosides, were investigated in comparison with an extract of Korean Red Ginseng (ERG).


Fermented Garlic Ameliorates Hypercholesterolemia and Inhibits Platelet Activation.

  • Muhammad Irfan‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2019‎

Dietary cholesterol augments the lipid profile and induces the production and activation of platelets, leading to the development of atherosclerosis with detrimental effects on cardiovascular health. Ethnomedicine and Mediterranean diets are natural and cost-effective approaches against several ailments including cardiovascular diseases. In addition, fermented foods have attracted interest due to their increased nutrient profile and enhanced bioavailability and efficacy. Garlic is known to reduce cholesterol and inhibit platelet activation. Therefore, we examined whether fermented garlic could effectively ameliorate the effects of hypercholesterolemia and platelet functions in rats. Male Sprague-Dawley rats were fed a hypercholesterolemic diet and treated with spirulina and fermented and nonfermented preparations of garlic for one month. Platelet aggregation and granule secretion were assessed to evaluate platelet activation. Analysis of the liver and kidney weights and lipid and enzymatic profiles of the serum and whole blood analysis was performed. The expression levels of SREBP-2, ACAT-2, and HMG-CoA were assessed by RT-PCR, while ACAT-1 and ACAT-2 were assessed by real-time PCR, and histological changes in the liver and adipose tissues were analyzed. Both fermented and nonfermented garlic inhibited platelet aggregation and granule secretion; however, fermented garlic exhibited a greater inhibitory effect. In comparison with nonfermented garlic, fermented garlic significantly reduced liver weight and triglyceride concentrations. Fermented garlic also markedly abrogated the detrimental effects of steatosis on liver and adipose tissues. We conclude that fermented garlic significantly improved the lipid profile and modulated platelet functions, thereby inhibiting atherosclerosis- and platelet-related cardiovascular disorders.


Antiplatelet Activity of Morus alba Leaves Extract, Mediated via Inhibiting Granule Secretion and Blocking the Phosphorylation of Extracellular-Signal-Regulated Kinase and Akt.

  • Dong-Seon Kim‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2014‎

Ethnopharmacological Relevance. Morus alba L. leaves (MAE) have been used in fork medicine for the treatment of beriberi, edema, diabetes, hypertension, and atherosclerosis. However, underlying mechanism of MAE on cardiovascular protection remains to be elucidated. Therefore, we investigated whether MAE affect platelet aggregation and thrombosis. Materials and Methods. The anti-platelet activity of MAE was studied using rat platelets. The extent of anti-platelet activity of MAE was assayed in collagen-induced platelet aggregation. ATP and serotonin release was carried out. The activation of integrin α IIb β 3 and phosphorylation of signaling molecules, including MAPK and Akt, were investigated with cytofluorometer and immunoblotting, respectively. The thrombus formation in vivo was also evaluated in arteriovenous shunt model of rats. Results. HPLC chromatographic analysis revealed that MAE contained rutin and isoquercetin. MAE dose-dependently inhibited collagen-induced platelet aggregation. MAE also attenuated serotonin secretion and thromboxane A2 formation. In addition, the extract in vivo activity showed that MAE at 100, 200, and 400 mg/kg significantly and dose-dependently attenuated thrombus formation in rat arterio-venous shunt model by 52.3% (P < 0.001), 28.3% (P < 0.01), and 19.1% (P < 0.05), respectively. Conclusions. MAE inhibit platelet activation, TXB2 formation, serotonin secretion, aggregation, and thrombus formation. The plant extract could be considered as a candidate to anti-platelet and antithrombotic agent.


Antiplatelet and Antithrombotic Effects of Epimedium koreanum Nakai.

  • Muhammad Irfan‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2021‎

Background and Objective. Epimedium koreanum Nakai is a medicinal plant known for its health beneficial effects on impotence, arrhythmia, oxidation, aging, osteoporosis, and cardiovascular diseases. However, there is no report available that shows its effects on platelet functions. Here, we elucidated antiplatelet and antithrombotic effects of ethyl acetate fraction of E. koreanum. Methodology. We analyzed the antiplatelet properties using standard in vitro and in vivo techniques, such as light transmission aggregometry, scanning electron microscopy, intracellular calcium mobilization measurement, dense granule secretion, and flow cytometry to assess integrin α IIb β 3 activation, clot retraction, and Western blot, on washed platelets. The antithrombotic effects of E. koreanum were assessed by arteriovenous- (AV-) shunt model in rats, and its effects on hemostasis were analyzed by tail bleeding assay in mice. Key Results. E. koreanum inhibited platelet aggregation in agonist-stimulated human and rat washed platelets, and it also reduced calcium mobilization, ATP secretion, and TXB2 formation. Fibrinogen binding, fibronectin adhesion, and clot retraction by attenuated integrin α IIb β 3-mediated inside-out and outside-in signaling were also decreased. Reduced phosphorylation of extracellular signal-regulated kinases (ERK), Akt, PLCγ2, and Src was observed. Moreover, the fraction inhibited thrombosis. HPLC results revealed that the fraction predominantly contained icariin. Conclusion and Implications. E. koreanum inhibited platelet aggregation and thrombus formation by attenuating calcium mobilization, ATP secretion, TXB2 formation, and integrin α IIb β 3 activation. Therefore, it may be considered as a potential candidate to treat and prevent platelet-related cardiovascular disorders.


Inhibitory effects of total saponin from Korean Red Ginseng on [Ca(2+)]i mobilization through phosphorylation of cyclic adenosine monophosphate-dependent protein kinase catalytic subunit and inositol 1,4,5-trisphosphate receptor type I in human platelets.

  • Jung-Hae Shin‎ et al.
  • Journal of ginseng research‎
  • 2015‎

Intracellular Ca(2+)([Ca(2+)]i) is a platelet aggregation-inducing molecule. Therefore, understanding the inhibitory mechanism of [Ca(2+)]i mobilization is very important to evaluate the antiplatelet effect of a substance. This study was carried out to understand the Ca(2+)-antagonistic effect of total saponin from Korean Red Ginseng (KRG-TS).


Antiplatelet and Antithrombotic Activities of Lespedeza cuneata via Pharmacological Inhibition of Integrin αIIbβ3, MAPK, and PI3K/AKT Pathways and FeCl3-Induced Murine Thrombosis.

  • Abdul Wahab Akram‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2024‎

Cardiovascular diseases (CVDs) have been the major cause of mortality all around the globe. Lespedeza cuneata abbreviated as L. cuneata with the authority name of Dumont de Courset (G. Don) is a perennial flowering plant commonly grown in Asian countries such as Korea, Japan, China, and Taiwan. We aimed to investigate the L. cuneata extract's antiplatelet and antithrombotic properties as GC-MS analysis indicated that the extract contained short-chain fatty acids, which have been reported to possess beneficial cardiovascular effects. L. cuneata was extracted using water, 50% EtOH, 70% EtOH, and 100% EtOH. For in vitro antiplatelet analysis, washed platelets were prepared and incubated with L. cuneata with 200 μg/mL of 50% EtOH in the presence of 1 mM of CaCl2 for 1 minute followed by agonist (collagen 2.5 μg/mL or ADP 10 μM or thrombin 0.1 U/mL) stimulation for 5 minutes over light transmission aggregometer. Scanning electron microscopy was performed to assess platelet shape change. ATP release and intracellular calcium mobilization were quantified to assess the granular content. Fibrinogen-binding assay and clot retraction assay assessed integrin αIIbβ3-mediated inside-out and outside-in signaling. Protein phosphorylation expression was investigated by western blot analysis. Finally, the in vivo antithrombotic efficacy was investigated by oral dosage of L. cuneata 200 and 400 mg/kg and aspirin 100 mg/kg for 7 days, and tail bleeding and FeCl3-induced murine thrombus model were performed. In vitro platelet aggregation and platelet shape change were dose-dependently suppressed by L. cuneata. Calcium mobilization, dense granules secretion, integrin αIIbβ3-mediated inside-out and outside-in signaling, and protein phosphorylation of MAPK and PI3K/Akt pathways were significantly inhibited. In vivo assays revealed that L. cuneata prevents side effects of synthetic drugs via nonsignificantly increasing bleeding time and improving coronary artery blood flow and animal survival. Our results demonstrate that L. cuneata exhibited potent antiplatelet and antithrombotic effects and can be considered a potential herbal medicine with cardioprotective effects.


Inhibitory effects of thromboxane A2 generation by ginsenoside Ro due to attenuation of cytosolic phospholipase A2 phosphorylation and arachidonic acid release.

  • Jung-Hae Shin‎ et al.
  • Journal of ginseng research‎
  • 2019‎

Thromboxane A2 (TXA2) induces platelet aggregation and promotes thrombus formation. Although ginsenoside Ro (G-Ro) from Panax ginseng is known to exhibit a Ca2+-antagonistic antiplatelet effect, whether it inhibits Ca2+-dependent cytosolic phospholipase A2 (cPLA2α) activity to prevent the release of arachidonic acid (AA), a TXA2 precursor, is unknown. In this study, we attempted to identify the mechanism underlying G-Ro-mediated TXA2 inhibition.


In Vitro Antiplatelet Activity of Mulberroside C through the Up-Regulation of Cyclic Nucleotide Signaling Pathways and Down-Regulation of Phosphoproteins.

  • Hyuk-Woo Kwon‎ et al.
  • Genes‎
  • 2021‎

Physiological agonists trigger signaling cascades, called "inside-out signaling", and activated platelets facilitate adhesion, shape change, granule release, and structural change of glycoprotein IIb/IIIa (αIIb/β3). Activated αIIb/β3 interacts with fibrinogen and begins second signaling cascades called "outside-in signaling". These two signaling pathways can lead to hemostasis or thrombosis. Thrombosis can occur in arterial and venous blood vessels and is a major medical problem. Platelet-mediated thrombosis is a major cause of cardiovascular disease (CVD). Therefore, controlling platelet activity is important for platelet-mediated thrombosis and cardiovascular diseases. In this study, focus on Morus Alba Linn, a popular medicinal plant, to inhibit the function of platelets and found the containing component mulberroside C. We examine the effect of mulberroside C on the regulation of phosphoproteins, platelet-activating factors, and binding molecules. Agonist-induced human platelet aggregation is dose-dependently inhibited by mulberroside C without cytotoxicity, and it decreased Ca2+ mobilization and p-selectin expression through the upregulation of inositol 1, 4, 5-triphosphate receptor I (Ser1756), and downregulation of extracellular signal-regulated kinase (ERK). In addition, mulberroside C inhibited thromboxane A2 production, fibrinogen binding, and clot retraction. Our results show antiplatelet effects and antithrombus formation of mulberroside C in human platelets. Thus, we confirm that mulberroside C could be a potential phytochemical for the prevention of thrombosis-mediated CVDs.


Inhibitory effects of epigallocatechin-3-gallate on microsomal cyclooxygenase-1 activity in platelets.

  • Dong-Ha Lee‎ et al.
  • Biomolecules & therapeutics‎
  • 2013‎

In this study, we investigated the effect of (-)-epigallocatechin-3-gallate (EGCG), a major component of green tea catechins from green tea leaves, on activities of cyclooxygenase (COX)-1 and thromboxane synthase (TXAS), thromboxane A2 (TXA2) production associated microsomal enzymes. EGCG inhibited COX-1 activity to 96.9%, and TXAS activity to 20% in platelet microsomal fraction having cytochrome c reductase (an endoplasmic reticulum marker enzyme) activity and expressing COX-1 (70 kDa) and TXAS (58 kDa) proteins. The inhibitory ratio of COX-1 to TXAS by EGCG was 4.8. These results mean that EGCG has a stronger selectivity in COX-1 inhibition than TXAS inhibition. In special, a nonsteroid anti-inflammatory drug aspirin, a COX-1 inhibitor, inhibited COX-1 activity by 11.3% at the same concentration (50 μM) as EGCG that inhibited COX-1 activity to 96.9% as compared with that of control. This suggests that EGCG has a stronger effect than that of aspirin on inhibition of COX-1 activity. Accordingly, we demonstrate that EGCG might be used as a crucial tool for a strong negative regulator of COX-1/TXA2 signaling pathway to inhibit thrombotic disease-associated platelet aggregation.


Blood flow-improving activity of methyl jasmonate-treated adventitious roots of mountain ginseng.

  • Young-Hwan Ban‎ et al.
  • Laboratory animal research‎
  • 2017‎

Ginsenosides from Panax ginseng are well known for their diverse pharmacological effects including antithrombotic activity. Since adventitious roots of mountain ginseng (ARMG) also contain various ginsenosides, blood flow-improving effects of the dried powder and extract of ARMG were investigated. Rats were orally administered with dried powder (PARMG) or ethanol extract (EARMG) of ARMG (125, 250 or 500 mg/kg) or aspirin (30 mg/kg, a reference control) for 3 weeks. Forty min after the final administration, carotid arterial thrombosis was induced by applying a 70% FeCl3-soaked filter paper outside the arterial wall for 5 min, and the blood flow was monitored with a laser Doppler probe. Both PARMG and EARMG delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at high doses. In mechanism studies, a high concentration of EARMG inhibited platelet aggregation induced by collagen in vitro. In addition, EARMG improved the blood lipid profiles, decreasing triglyceride and cholesterol levels. Although additional action mechanisms remain to be clarified, it is suggested that ARMG containing high amount of ginsenosides such as Rg3 improves blood flow not only by inhibiting oxidative thrombosis, but also by modifying blood lipid profiles.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: