Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Expression of plakophilins (PKP1, PKP2, and PKP3) in gastric cancers.

  • Guzin G Demirag‎ et al.
  • Diagnostic pathology‎
  • 2011‎

The importance of cell-cell junction proteins (including armadillo proteins) in tumor biology is known, but limited with regard to plakophilins. We explored the relationship between plakophilins (PKP1, PKP2, PKP3) to gastric cancer via immunohistochemical techniques.


Antagonistic Regulation of Intercellular Cohesion by Plakophilins 1 and 3.

  • René Keil‎ et al.
  • The Journal of investigative dermatology‎
  • 2016‎

Desmosomes are cell-cell adhesive structures essential for tissue integrity of the epidermis and the heart. Their constituents belong to multigene families giving rise to desmosomes of variable composition. So far, the functional significance of context-dependent composition in desmosome formation, dynamics, or stability during epidermal differentiation is incompletely understood. In this comparative study, we have uncovered unique and partially antagonistic functions of plakophilins 1 and 3 that are both expressed in the murine epidermis. These plakophilins differ in their localization patterns and kinetics during de novo desmosome formation and are regulated by distinct mechanisms. Moreover, plakophilin 3-containing desmosomes are more dynamic than desmosomes that contain predominantly plakophilin 1. Further, we show that Ca(2+)-independence of desmosomes strictly depends on plakophilin 1, whereas elevated levels of plakophilin 3 prevent the formation of hyperadhesive desmosomes in a protein kinase C alpha-dependent manner, even in the presence of plakophilin 1. Our study demonstrates that the balance between plakophilins 1 and 3 determines the context-dependent properties of epidermal desmosomes. In this setting, plakophilin 1 provides stable intercellular cohesion that resists mechanical stress, whereas plakophilin 3 confers dynamics as required during tissue homeostasis and repair. Our data have implications for the role of plakophilins in carcinogenesis.


Desmosomal plakophilins in the prostate and prostatic adenocarcinomas: implications for diagnosis and tumor progression.

  • Sonja Breuninger‎ et al.
  • The American journal of pathology‎
  • 2010‎

The plakophilins, members of the armadillo-repeat family, consist of three different proteins (PKP1-3) that are specifically recruited to desmosomal plaques in a highly cell type-specific manner. Using immunofluorescence, immunoelectron microscopy, and immunoblot, we found that all three plakophilins occurred in luminal and basal cells of the pseudostratified prostate epithelium. The analysis of 135 cases of prostatic adenocarcinomas grouped into tumors with low (Gleason score < or = 6), intermediate (Gleason score 7), and high Gleason score (8 < or = Gleason score < or = 10) showed that the expression of PKP1 was reduced or lost in adenocarcinomas with high Gleason scores. The expression of PKP2 was unchanged in all prostatic adenocarcinomas analyzed. In contrast, PKP3 expression was increased in carcinomas with high Gleason scores in comparison with carcinomas with low Gleason scores. In DU 145 cell lines with either overexpression or knockdown of PKP3, both imbalances resulted in fewer desmosomal cell contacts. In addition, overexpression of PKP3 in DU 145 cells led to an augmentation in proliferation rate. Our data imply that both loss of PKP1 and up-regulation of PKP3 expression are biologically important events in prostate cancer and are associated with a more aggressive phenotype.


Armc8 is an evolutionarily conserved armadillo protein involved in cell-cell adhesion complexes through multiple molecular interactions.

  • Ismail Sahin Gul‎ et al.
  • Bioscience reports‎
  • 2019‎

Armadillo-repeat-containing protein 8 (Armc8) belongs to the family of armadillo-repeat containing proteins, which have been found to be involved in diverse cellular functions including cell-cell contacts and intracellular signaling. By comparative analyses of armadillo repeat protein structures and genomes from various premetazoan and metazoan species, we identified orthologs of human Armc8 and analyzed in detail the evolutionary relationship of Armc8 genes and their encoded proteins. Armc8 is a highly ancestral armadillo protein although not present in yeast. Consequently, Armc8 is not the human ortholog of yeast Gid5/Vid28.Further, we performed a candidate approach to characterize new protein interactors of Armc8. Interactions between Armc8 and specific δ-catenins (plakophilins-1, -2, -3 and p0071) were observed by the yeast two-hybrid approach and confirmed by co-immunoprecipitation and co-localization. We also showed that Armc8 interacts specifically with αE-catenin but neither with αN-catenin nor with αT-catenin. Degradation of αE-catenin has been reported to be important in cancer and to be regulated by Armc8. A similar process may occur with respect to plakophilins in desmosomes. Deregulation of desmosomal proteins has been considered to contribute to tumorigenesis.


Identification of PKP 2/3 as potential biomarkers of ovarian cancer based on bioinformatics and experiments.

  • Lingling Gao‎ et al.
  • Cancer cell international‎
  • 2020‎

Plakophilins (PKPs) are widely involved in gene transcription, translation, and signal transduction, playing a crucial role in tumorigenesis and progression. However, the function and potential mechanism of PKP1/2/3 in ovarian cancer (OC) remains unclear. It's of great value to explore the expression and prognostic values of PKP1/2/3 and their potential mechanisms, immune infiltration in OC.


The molecular evolution of the p120-catenin subfamily and its functional associations.

  • Robert H Carnahan‎ et al.
  • PloS one‎
  • 2010‎

p120-catenin (p120) is the prototypical member of a subclass of armadillo-related proteins that includes δ-catenin/NPRAP, ARVCF, p0071, and the more distantly related plakophilins 1-3. In vertebrates, p120 is essential in regulating surface expression and stability of all classical cadherins, and directly interacts with Kaiso, a BTB/ZF family transcription factor.


Requirement of plakophilin 2 for heart morphogenesis and cardiac junction formation.

  • Katja S Grossmann‎ et al.
  • The Journal of cell biology‎
  • 2004‎

Plakophilins are proteins of the armadillo family that function in embryonic development and in the adult, and when mutated can cause disease. We have ablated the plakophilin 2 gene in mice. The resulting mutant mice exhibit lethal alterations in heart morphogenesis and stability at mid-gestation (E10.5-E11), characterized by reduced trabeculation, disarrayed cytoskeleton, ruptures of cardiac walls, and blood leakage into the pericardiac cavity. In the absence of plakophilin 2, the cytoskeletal linker protein desmoplakin dissociates from the plaques of the adhering junctions that connect the cardiomyocytes and forms granular aggregates in the cytoplasm. By contrast, embryonic epithelia show normal junctions. Thus, we conclude that plakophilin 2 is important for the assembly of junctional proteins and represents an essential morphogenic factor and architectural component of the heart.


Plakophilin 2: a critical scaffold for PKC alpha that regulates intercellular junction assembly.

  • Amanda E Bass-Zubek‎ et al.
  • The Journal of cell biology‎
  • 2008‎

Plakophilins (PKPs) are armadillo family members related to the classical cadherin-associated protein p120(ctn). PKPs localize to the cytoplasmic plaque of intercellular junctions and participate in linking the intermediate filament (IF)-binding protein desmoplakin (DP) to desmosomal cadherins. In response to cell-cell contact, PKP2 associates with DP in plaque precursors that form in the cytoplasm and translocate to nascent desmosomes. Here, we provide evidence that PKP2 governs DP assembly dynamics by scaffolding a DP-PKP2-protein kinase C alpha (PKC alpha) complex, which is disrupted by PKP2 knockdown. The behavior of a phosphorylation-deficient DP mutant that associates more tightly with IF is mimicked by PKP2 and PKC alpha knockdown and PKC pharmacological inhibition, all of which impair junction assembly. PKP2 knockdown is accompanied by increased phosphorylation of PKC substrates, raising the possibility that global alterations in PKC signaling may contribute to pathogenesis of congenital defects caused by PKP2 deficiency.


Plakophilin 1 stimulates translation by promoting eIF4A1 activity.

  • Annika Wolf‎ et al.
  • The Journal of cell biology‎
  • 2010‎

Plakophilins 1-3 (PKP1-3) are desmosomal proteins of the p120(ctn) family of armadillo-related proteins that are essential for organizing the desmosomal plaque. Recent findings identified PKPs in stress granules, suggesting an association with the translational machinery. However, a role of PKPs in controlling translation remained elusive so far. In this study, we show a direct association of PKP1 with the eukaryotic translation initiation factor 4A1 (eIF4A1). PKP1 stimulated eIF4A1-dependent translation via messenger RNA cap and encephalomyocarditis virus internal ribosomal entry site (IRES) structures, whereas eIF4A1-independent translation via hepatitis C virus IRES was not affected. PKP1 copurified with eIF4A1 in the cap complex, and its overexpression stimulated eIF4A1 recruitment into cap-binding complexes. At the molecular level, PKP1 directly promoted eIF4A1 adenosine triphosphatase activity. The stimulation of translation upon PKP1 overexpression correlated with the up-regulation of proliferation and cell size. In conclusion, these findings identify PKP1 as a regulator of translation and proliferation via modulation of eIF4A1 activity and suggest that PKP1 controls cell growth in physiological and pathological conditions.


Analysis of Multiple Human Tumor Cases Reveals the Carcinogenic Effects of PKP3.

  • Shujie Ruan‎ et al.
  • Journal of healthcare engineering‎
  • 2021‎

Plakophilins (PKPs) act as a key regulator of different signaling programs and control a variety of cellular processes ranging from transcription, protein synthesis, growth, proliferation, and tumor development. The function and possible mechanism of PKP3 in ovarian cancer (OC) remain unknown. It is extremely important to investigate the expression and prognostic values of PKP3, as well as their possible mechanisms, and immune infiltration in OC. Therefore, in this paper we explored the potential oncogenic role of PKP3 in 33 tumors based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. The result outcomes showed that PKP3 is highly expressed in most cancers, and the expression level and prognosis of PKP3 showed little significance in cancer patients. Moreover, oncologists have found that members of the plakophilin family have different degrees of abnormality in ovarian cancer. PKP3 played a key part in carcinogenesis and aggressiveness of OC as well as malignant biological activity and can be used as a biomarker for early diagnosis and prognosis evaluation in OC.


Growth Retardation, Loss of Desmosomal Adhesion, and Impaired Tight Junction Function Identify a Unique Role of Plakophilin 1 In Vivo.

  • Katrin Rietscher‎ et al.
  • The Journal of investigative dermatology‎
  • 2016‎

Desmosomes mediate strong intercellular adhesion through desmosomal cadherins that interact with intracellular linker proteins including plakophilins (PKPs) 1-3 to anchor the intermediate filaments. PKPs show overlapping but distinct expression patterns in the epidermis. So far, the contribution of individual PKPs in differentially regulating desmosome function is incompletely understood. To resolve the role of PKP1 we ablated the PKP1 gene. Here, we report that PKP1(-/-) mice were born at the expected mendelian ratio with reduced birth weight, but they otherwise appeared normal immediately after birth. However, their condition rapidly declined, and the mice died within 24 hours, developing fragile skin with lesions in the absence of obvious mechanical trauma. This was accompanied by sparse and small desmosomes. Newborn PKP1(-/-) mice showed disturbed tight junctions with an impaired inside-out barrier, whereas the outside-in barrier was unaffected. Keratinocytes isolated from these mice showed strongly reduced intercellular cohesion, delayed tight junction formation, and reduced transepithelial resistance and reduced proliferation rates. Our study shows a nonredundant and essential role of PKP1 in desmosome and tight junction function and supports a role of PKP1 in growth control, a function that is crucial in wound healing and epidermal carcinogenesis.


Plakophilin-3 is required for late embryonic amphibian development, exhibiting roles in ectodermal and neural tissues.

  • William A Munoz‎ et al.
  • PloS one‎
  • 2012‎

The p120-catenin family has undergone a significant expansion during the evolution of vertebrates, resulting in varied functions that have yet to be discerned or fully characterized. Likewise, members of the plakophilins, a related catenin subfamily, are found throughout the cell with little known about their functions outside the desmosomal plaque. While the plakophilin-3 (Pkp3) knockout mouse resulted in skin defects, we find larger, including lethal effects following its depletion in Xenopus. Pkp3, unlike some other characterized catenins in amphibians, does not have significant maternal deposits of mRNA. However, during embryogenesis, two Pkp3 protein products whose temporal expression is partially complimentary become expressed. Only the smaller of these products is found in adult Xenopus tissues, with an expression pattern exhibiting distinctions as well as overlaps with those observed in mammalian studies. We determined that Xenopus Pkp3 depletion causes a skin fragility phenotype in keeping with the mouse knockout, but more novel, Xenopus tailbud embryos are hyposensitive to touch even in embryos lacking outward discernable phenotypes, and we additionally resolved disruptions in certain peripheral neural structures, altered establishment and migration of neural crest, and defects in ectodermal multiciliated cells. The use of two distinct morpholinos, as well as rescue approaches, indicated the specificity of these effects. Our results point to the requirement of Pkp3 in amphibian embryogenesis, with functional roles in a number of tissue types.


Plakophilin 2 regulates intestinal barrier function by modulating protein kinase C activity in vitro.

  • Simon Nagler‎ et al.
  • Tissue barriers‎
  • 2023‎

Previous data provided evidence for a critical role of desmosomes to stabilize intestinal epithelial barrier (IEB) function. These studies suggest that desmosomes not only contribute to intercellular adhesion but also play a role as signaling hubs. The contribution of desmosomal plaque proteins plakophilins (PKP) in the intestinal epithelium remains unexplored. The intestinal expression of PKP2 and PKP3 was verified in human gut specimens, human intestinal organoids as well as in Caco2 cells whereas PKP1 was not detected. Knock-down of PKP2 using siRNA in Caco2 cells resulted in loss of intercellular adhesion and attenuated epithelial barrier. This was paralleled by changes of the whole desmosomal complex, including loss of desmoglein2, desmocollin2, plakoglobin and desmoplakin. In addition, tight junction proteins claudin1 and claudin4 were reduced following the loss of PKP2. Interestingly, siRNA-induced loss of PKP3 did not change intercellular adhesion and barrier function in Caco2 cells, while siRNA-induced loss of both PKP2 and PKP3 augmented the changes observed for reduced PKP2 alone. Moreover, loss of PKP2 and PKP2/3, but not PKP3, resulted in reduced activity levels of protein kinase C (PKC). Restoration of PKC activity using Phorbol 12-myristate 13-acetate (PMA) rescued loss of intestinal barrier function and attenuated the reduced expression patterns of claudin1 and claudin4. Immunostaining, proximity ligation assays and co-immunoprecipitation revealed a direct interaction between PKP2 and PKC. In summary, our in vitro data suggest that PKP2 plays a critical role for intestinal barrier function by providing a signaling hub for PKC-mediated expression of tight junction proteins claudin1 and claudin4.


A catenin of the plakophilin-subfamily, Pkp3, responds to canonical-Wnt pathway components and signals.

  • Ji Yeon Hong‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Vertebrate beta-catenin plays a key role as a transducer of canonical-Wnt signals. We earlier reported that, similar to beta-catenin, the cytoplasmic signaling pool of p120-catenin-isoform1 is stabilized in response to canonical-Wnt signals. To obtain a yet broader view of the Wnt-pathway's impact upon catenin proteins, we focused upon plakophilin3 (plakophilin-3; Pkp3) as a representative of the plakophilin-catenin subfamily. Promoting tissue integrity, the plakophilins assist in linking desmosomal cadherins to intermediate filaments at desmosome junctions, and in common with other catenins they perform additional functions including in the nucleus. In this report, we test whether canonical-Wnt pathway components modulate Pkp3 protein levels. We find that in common with beta-catenin and p120-catenin-isoform1, Pkp3 is stabilized in the presence of a Wnt-ligand or a dominant-active form of the LRP6 receptor. Pkp3's levels are conversely lowered upon expressing destruction-complex components such as GSK3β and Axin, and in further likeness to beta-catenin and p120-isoform1, Pkp3 associates with GSK3beta and Axin. Finally, we note that Pkp3-catenin trans-localizes into the nucleus in response to Wnt-ligand and its exogenous expression stimulates an accepted Wnt reporter. These findings fit an expanded model where context-dependent Wnt-signals or pathway components modulate Pkp3-catenin levels. Future studies will be needed to assess potential gene regulatory, cell adhesive, or cytoskeletal effects.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: