Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Correlational Study of Aminopeptidase Activities between Left or Right Frontal Cortex versus the Hypothalamus, Pituitary, Adrenal Axis of Spontaneously Hypertensive Rats Treated with Hypotensive or Hypertensive Agents.

  • Isabel Prieto‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

It has been suggested that the neuro-visceral integration works asymmetrically and that this asymmetry is dynamic and modifiable by physio-pathological influences. Aminopeptidases of the renin-angiotensin system (angiotensinases) have been shown to be modifiable under such conditions. This article analyzes the interactions of these angiotensinases between the left or right frontal cortex (FC) and the same enzymes in the hypothalamus (HT), pituitary (PT), adrenal (AD) axis (HPA) in control spontaneously hypertensive rats (SHR), in SHR treated with a hypotensive agent in the form of captopril (an angiotensin-converting enzyme inhibitor), and in SHR treated with a hypertensive agent in the form of the L-Arginine hypertensive analogue L-NG-Nitroarginine Methyl Ester (L-NAME). In the control SHR, there were significant negative correlations between the right FC with HPA and positive correlations between the left FC and HPA. In the captopril group, the predominance of negative correlations between the right FC and HPA and positive correlations between the HPA and left FC was maintained. In the L-NAME group, a radical change in all types of interactions was observed; particularly, there was an inversion in the predominance of negative correlations between the HPA and left FC. These results indicated a better balance of neuro-visceral interactions after captopril treatment and an increase in these interactions in the hypertensive animals, especially in those treated with L-NAME.


High Housing Density-Induced Chronic Stress Diminishes Ovarian Reserve via Granulosa Cell Apoptosis by Angiotensin II Overexpression in Mice.

  • Jihyun Kim‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Repeated and prolonged stress causes hypothalamic-pituitary-adrenal (HPA) dysregulation. Excessive hypothalamic-pituitary-adrenal axis activity has been linked to inadequate activation of the hypothalamus-pituitary-ovarian axis, which controls the growth and development of ovarian follicles and oocytes. Therefore, we assessed the ovarian reserve under high-housing-density-induced prolonged stress, and investigated the mechanisms underlying diminished ovarian reserve in this study. Eight-week-old female C57BL/6 mice were housed for 10 weeks under different housing densities. We then assessed hormone levels, performed histology and immunohistochemistry analyses of ovarian follicles, evaluated ovarian mRNA expression, and measured angiotensin II-mediated apoptosis in vitro. More densely housed mice presented increased corticosterone levels and decreased follicle-stimulating and luteinizing hormone levels. Moreover, mice exposed to prolonged ordinary stress showed a reduced level of serum anti-Müllerian hormone and an increased number of atretic ovarian follicles. Stressed mice showed increased levels of angiotensinogen and angiotensin II in the ovaries and serum. Furthermore, our in vitro study confirmed that high-housing-density-related stress induced granulosa cell apoptosis, resulting in diminished ovarian reserves. Collectively, our findings highlight the importance of women managing everyday stress to maintain their reproductive health.


Stress and the HPA Axis: Balancing Homeostasis and Fertility.

  • Dana N Joseph‎ et al.
  • International journal of molecular sciences‎
  • 2017‎

An organism's reproductive fitness is sensitive to the environment, integrating cues of resource availability, ecological factors, and hazards within its habitat. Events that challenge the environment of an organism activate the central stress response system, which is primarily mediated by the hypothalamic-pituitary-adrenal (HPA) axis. The regulatory functions of the HPA axis govern the cardiovascular and metabolic system, immune functions, behavior, and reproduction. Activation of the HPA axis by various stressors primarily inhibits reproductive function and is able to alter fetal development, imparting a biological record of stress experienced in utero. Clinical studies and experimental data indicate that stress signaling can mediate these effects through direct actions in the brain, gonads, and embryonic tissues. This review focuses on the mechanisms by which stress activation of the HPA axis impacts fertility and fetal development.


Glucocorticoids Cause Gender-Dependent Reversal of Hepatic Fibrosis in the MDR2-Knockout Mouse Model.

  • Anca D Petrescu‎ et al.
  • International journal of molecular sciences‎
  • 2017‎

Hepatic cholestasis is associated with a significant suppression of the hypothalamus-pituitary-adrenal axis (HPA). In the present study, we tested the hypothesis that activation of the HPA axis by corticosterone treatment can reverse liver inflammation and fibrosis in a multidrug resistance protein 2 knockout (MDR2KO) transgenic mouse model of hepatic cholestasis. Friend Virus B NIH-Jackson (FVBN) control and MDR2KO male and female mice were treated with vehicle or corticosterone for two weeks, then serum and liver analyses of hepatic cholestasis markers were performed. Indicators of inflammation, such as increased numbers of macrophages, were determined. MDR2KO mice had lower corticotropin releasing hormone and corticosterone levels than FVBN controls in the serum. There was a large accumulation of CD68 and F4/80 macrophages in MDR2KO mice livers, which indicated greater inflammation compared to FVBNs, an effect reversed by corticosterone treatment. Intrahepatic biliary duct mass, collagen deposition and alpha smooth muscle actin (αSMA) were found to be much higher in livers of MDR2KO mice than in controls; corticosterone treatment significantly decreased these fibrosis markers. When looking at the gender-specific response to corticosterone treatment, male MDR2KO mice tended to have a more pronounced reversal of liver fibrosis than females treated with corticosterone.


Orexin A Enhances Pro-Opiomelanocortin Transcription Regulated by BMP-4 in Mouse Corticotrope AtT20 Cells.

  • Satoshi Fujisawa‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Orexin is expressed mainly in the hypothalamus and is known to activate the hypothalamic-pituitary-adrenal (HPA) axis that is involved in various stress responses and its resilience. However, the effects of orexin on the endocrine function of pituitary corticotrope cells remain unclear. In this study, we investigated the roles of orexin A in pro-opiomelanocortin (POMC) transcription using mouse corticotrope AtT20 cells, focusing on the bone morphogenetic protein (BMP) system expressed in the pituitary. Regarding the receptors for orexin, type 2 (OXR2) rather than type 1 (OX1R) receptor mRNA was predominantly expressed in AtT20 cells. It was found that orexin A treatment enhanced POMC expression, induced by corticotropin-releasing hormone (CRH) stimulation through upregulation of CRH receptor type-1 (CRHR1). Orexin A had no direct effect on the POMC transcription suppressed by BMP-4 treatment, whereas it suppressed Smad1/5/9 phosphorylation and Id-1 mRNA expression induced by BMP-4. It was further revealed that orexin A had no significant effect on the expression levels of type I and II BMP receptors but upregulated inhibitory Smad6/7 mRNA and protein levels in AtT20 cells. The results demonstrated that orexin A upregulated CRHR signaling and downregulated BMP-Smad signaling, leading to an enhancement of POMC transcription by corticotrope cells.


Effects of Growth Hormone Receptor Ablation in Corticotropin-Releasing Hormone Cells.

  • Willian O Dos Santos‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Corticotropin-releasing hormone (CRH) cells are the dominant neuronal population responsive to the growth hormone (GH) in the paraventricular nucleus of the hypothalamus (PVH). However, the physiological importance of GH receptor (GHR) signaling in CRH neurons is currently unknown. Thus, the main objective of the present study was to investigate the consequences of GHR ablation in CRH-expressing cells of male and female mice. GHR ablation in CRH cells did not cause significant changes in body weight, body composition, food intake, substrate oxidation, locomotor activity, glucose tolerance, insulin sensitivity, counterregulatory response to 2-deoxy-D-glucose and ghrelin-induced food intake. However, reduced energy expenditure was observed in female mice carrying GHR ablation in CRH cells. The absence of GHR in CRH cells did not affect anxiety, circadian glucocorticoid levels or restraint-stress-induced corticosterone secretion and activation of PVH neurons in both male and female mice. In summary, GHR ablation, specifically in CRH-expressing neurons, does not lead to major alterations in metabolism, hypothalamic-pituitary-adrenal axis, acute stress response or anxiety in mice. Considering the previous studies showing that central GHR signaling regulates homeostasis in situations of metabolic stress, future studies are still necessary to identify the potential physiological importance of GH action on CRH neurons.


Formation of False Context Fear Memory Is Regulated by Hypothalamic Corticotropin-Releasing Factor in Mice.

  • Emi Kasama‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Traumatic events frequently produce false fear memories. We investigated the effect of hypothalamic corticotropin-releasing factor (CRF) knockdown (Hy-Crf-KD) or overexpression (Hy-CRF-OE) on contextual fear memory, as fear stress-released CRF and hypothalamic-pituitary-adrenal axis activation affects the memory system. Mice were placed in a chamber with an electric footshock as a conditioning stimulus (CS) in Context A, then exposed to a novel chamber without CS, as Context B, at 3 h (B-3h) or 24 h (B-24h). The freezing response in B-3h was intensified in the experimental mice, compared to control mice not exposed to CS, indicating that a false fear memory was formed at 3 h. The within-group freezing level at B-24h was higher than that at B-3h, indicating that false context fear memory was enhanced at B-24h. The difference in freezing levels between B-3h and B-24h in Hy-Crf-KD mice was larger than that of controls. In Hy-CRF-OE mice, the freezing level at B-3h was higher than that of control and Hy-Crf-KD mice, while the freezing level in B-24h was similar to that in B-3h. Locomotor activity before CS and freezing level during CS were similar among the groups. Therefore, we hypothesized that Hy-Crf-KD potentiates the induction of false context fear memory, while Hy-CRF-OE enhances the onset of false fear memory formation.


Modeling Neuroimmune Interactions in Human Subjects and Animal Models to Predict Subtype-Specific Multidrug Treatments for Gulf War Illness.

  • Francisco J Carrera Arias‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Gulf War Illness (GWI) is a persistent chronic neuroinflammatory illness exacerbated by external stressors and characterized by fatigue, musculoskeletal pain, cognitive, and neurological problems linked to underlying immunological dysfunction for which there is no known treatment. As the immune system and the brain communicate through several signaling pathways, including the hypothalamic-pituitary-adrenal (HPA) axis, it underlies many of the behavioral and physiological responses to stressors via blood-borne mediators, such as cytokines, chemokines, and hormones. Signaling by these molecules is mediated by the semipermeable blood-brain barrier (BBB) made up of a monocellular layer forming an integral part of the neuroimmune axis. BBB permeability can be altered and even diminished by both external factors (e.g., chemical agents) and internal conditions (e.g., acute or chronic stress, or cross-signaling from the hypothalamic-pituitary-gonadal (HPG) axis). Such a complex network of regulatory interactions that possess feed-forward and feedback connections can have multiple response dynamics that may include several stable homeostatic states beyond normal health. Here we compare immune and hormone measures in the blood of human clinical samples and mouse models of Gulf War Illness (GWI) subtyped by exposure to traumatic stress for subtyping this complex illness. We do this via constructing a detailed logic model of HPA-HPG-Immune regulatory behavior that also considers signaling pathways across the BBB to neuronal-glial interactions within the brain. We apply conditional interactions to model the effects of changes in BBB permeability. Several stable states are identified in the system beyond typical health. Following alignment of the human and mouse blood profiles in the context of the model, mouse brain sample measures were used to infer the neuroinflammatory state in human GWI and perform treatment simulations using a genetic algorithm to optimize the Monte Carlo simulations of the putative treatment strategies aimed at returning the ill system back to health. We identify several ideal multi-intervention strategies and potential drug candidates that may be used to treat chronic neuroinflammation in GWI.


Learned Immobility Produces Enduring Impairment of the HPA Axis Reactivity in Mice without Replicating the Broad Spectrum of Depressive-Like Phenotype.

  • Sébastien Bullich‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The forced swim stress test (FST) is widely used for screening pharmacological or non-pharmacological strategies with potential antidepressant activities. Recent data have suggested that repeated FST for five consecutive days (i.e., 5d-RFSS) could be used to generate a robust depressive-like phenotype in mice. However, the face, construct, and predictive validities of 5d-RFSS have been recently challenged. This study took advantage of recent findings showing that mice vulnerability to anxiety is enhanced when animals are stressed during the dark phase, to provide new insight into the relevance of this model. Our results showed a progressive increase in time of immobility in 5d-RFSS mice relative to control non-stressed animals (sham). Three weeks later, we noticed that 5d-RFSS mice injected with the vehicle compound (Veh) still exhibited a high level of immobility in the FST whereas this behavior was reversed by the antidepressant drug amitriptyline (AMI). However, 5d-RFSS/Veh and 5d-RFSS mice/AMI mice showed normal performances in the open field, the novelty suppressed feeding and the tail suspension tests. Despite this lack of generalized behavioral deficits, an impairment of different parameters characterizing the hypothalamic-pituitary-adrenal (HPA) axis reactivity was evidenced in 5d-RFSS mice/Veh but not in 5d-RFSS mice/AMI. Despite anomalies in the HPA axis, the activity of the central serotonergic system remained unaffected in 5d-RFSS mice relative to controls. From our results, it is suggested that learned immobility does not replicate the broad spectrum of depressive symptoms observed in other chronic models of depression such as the unpredictable chronic mild stress (UCMS) model, the chronic social defeat stress (CSDS) model or chronic corticosterone (CORT) exposure but its influence on the HPA axis is remarkable. Further experiments are warranted to makes this model suitable for modelling depression and therefore refine its translational applicability.


The Role of Chemokines in the Pathophysiology of Major Depressive Disorder.

  • Vladimir M Milenkovic‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Major depressive disorder (MDD) is a debilitating condition, whose high prevalence and multisymptomatic nature set its standing as a leading contributor to global disability. To better understand this psychiatric disease, various pathophysiological mechanisms have been proposed, including changes in monoaminergic neurotransmission, imbalance of excitatory and inhibitory signaling in the brain, hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, and abnormalities in normal neurogenesis. While previous findings led to a deeper understanding of the disease, the pathogenesis of MDD has not yet been elucidated. Accumulating evidence has confirmed the association between chronic inflammation and MDD, which is manifested by increased levels of the C-reactive protein, as well as pro-inflammatory cytokines, such as Interleukin 1 beta, Interleukin 6, and the Tumor necrosis factor alpha. Furthermore, recent findings have implicated a related family of cytokines with chemotactic properties, known collectively as chemokines, in many neuroimmune processes relevant to psychiatric disorders. Chemokines are small (8-12 kDa) chemotactic cytokines, which are known to play roles in direct chemotaxis induction, leukocyte and macrophage migration, and inflammatory response propagation. The inflammatory chemokines possess the ability to induce migration of immune cells to the infection site, whereas their homeostatic chemokine counterparts are responsible for recruiting cells for their repair and maintenance. To further support the role of chemokines as central elements to healthy bodily function, recent studies suggest that these proteins demonstrate novel, brain-specific mechanisms including the modulation of neuroendocrine functions, chemotaxis, cell adhesion, and neuroinflammation. Elevated levels of chemokines in patient-derived serum have been detected in individuals diagnosed with major depressive disorder, bipolar disorder, and schizophrenia. Furthermore, despite the considerable heterogeneity of experimental samples and methodologies, existing biomarker studies have clearly demonstrated the important role of chemokines in the pathophysiology of psychiatric disorders. The purpose of this review is to summarize the data from contemporary experimental and clinical studies, and to evaluate available evidence for the role of chemokines in the central nervous system (CNS) under physiological and pathophysiological conditions. In light of recent results, chemokines could be considered as possible peripheral markers of psychiatric disorders, and/or targets for treating depressive disorders.


Cardamom (Elettaria cardamomum (L.) Maton) Seeds Intake Increases Energy Expenditure and Reduces Fat Mass in Mice by Modulating Neural Circuits That Regulate Adipose Tissue Lipolysis and Mitochondrial Oxidative Metabolism in Liver and Skeletal Muscle.

  • Claudia Delgadillo-Puga‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Cardamom seed (Elettaria cardamomum (L.) Maton; EC) is consumed in several countries worldwide and is considered a nutraceutical spice since it exerts antioxidant, anti-inflammatory, and metabolic activities. In obese individuals, EC intake also favors weight loss. However, the mechanism for these effects has not been studied. Here, we identified that EC modulates the neuroendocrine axis that regulates food intake, body weight, mitochondrial activity, and energy expenditure in mice. We fed C57BL/6 mice with diets containing 3%, 6%, or 12% EC or a control diet for 14 weeks. Mice fed the EC-containing diets gained less weight than control, despite slightly higher food intake. The lower final weight of EC-fed mice was due to lesser fat content but increased lean mass than control. EC intake increased lipolysis in subcutaneous adipose tissue, and reduced adipocyte size in subcutaneous, visceral, and brown adipose tissues. EC intake also prevented lipid droplet accumulation and increased mitochondrial content in skeletal muscle and liver. Accordingly, fasting and postprandial oxygen consumption, as well as fasting fat oxidation and postprandial glucose utilization were higher in mice fed with EC than in control. EC intake reduced proopiomelanocortin (POMC) mRNA content in the hypothalamic arcuate nucleus, without an impact on neuropeptide Y (NPY) mRNA. These neuropeptides control food intake but also influence the hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-adrenal (HPA) axes. Thyrotropin-releasing hormone (TRH) mRNA expression in the hypothalamic paraventricular nucleus (PVN) and circulating triiodothyronine (T3) were lower in EC-fed mice than in control. This effect was linked with decreased circulating corticosterone and weight of adrenal glands. Our results indicate that EC modulates appetite, increases lipolysis in adipose tissue and mitochondrial oxidative metabolism in liver and skeletal muscle, leading to increased energy expenditure and lower body fat mass. These metabolic effects were ascribable to the modulation of the HPT and HPA axes. LC-MS profiling of EC found 11 phenolic compounds among which protocatechuic acid (23.8%), caffeic acid (21.06%) and syringic acid (29.25%) were the most abundant, while GC-MS profiling showed 16 terpenoids among which costunolide (68.11%), ambrial (5.3%) and cis-α-terpineol (7.99%) were identified. Extrapolation of mice-to-human EC intake was performed using the body surface area normalization equation which gave a conversion equivalent daily human intake dose of 76.9-308.4 mg bioactives for an adult of 60 kg that can be obtained from 14.5-58.3 g of cardamom seeds (18.5-74.2 g cardamom pods). These results support further exploration of EC as a coadjuvant in clinical practice.


Effects of Pup Separation on Stress Response in Postpartum Female Rats.

  • Manu Kalyani‎ et al.
  • International journal of molecular sciences‎
  • 2017‎

There is a complex collection of neuroendocrine function during the postpartum period. Prolactin (PRL) released by suckling stimulus and its PRL receptors (PRL-R) in the central nervous system (CNS) are involved in hyporesponsiveness of the hypothalamic-pituitary-adrenal (HPA) axis in lactating mammals including rodents and humans. It is not clear how long it takes to reestablish the attenuated HPA axis activity of lactating rats to a pre-pregnancy state after pup separation. We first tested the hypothesis that HPA axis activity in response to an acute stress in postpartum rats would return to a pre-pregnancy state after pup separation. Restraint stress for 30 min was performed at the end of pup separation as an acute stressor. Plasma levels of corticosterone (CORT) were measured following restraint stress or no-stress (control) in virgin rats and postpartum rats housed with their pups or with pup removal for different periods of time of one hour, 24 h, or eight days. We then tested the hypothesis that circulating PRL level and CNS PRL-R gene expression were involved in mediating the acute stress response in postpartum rats. Plasma levels of PRL and PRL-R mRNA levels in the choroid plexus of the CNS were determined in both no-stress and stress, virgin rats, and postpartum rats housed with their pups or with pup removal for various periods, and their correlation with plasma CORT levels was assessed. The results demonstrated that PRL levels declined to virgin state in all postpartum rats separated from their pups, including the dams with one-hour pup separation. Stress-induced HPA activity dampened in lactating rats housed with pups, and returned to the pre-pregnancy state after 24 h of pup separation when both circulating PRL level and CNS PRL-R expression were restored to a pre-pregnancy state. Additionally, basal plasma CORT and CNS PRL-R expression were significantly correlated in rats with various pup status. This study suggested that stress-induced HPA activation occurred when PRL-R expression was similar to the level of virgin females, indicating that PRL-R upregulation contributes to an attenuated HPA response to acute stress. Understanding neuroendocrine responses to stress during the postpartum period is critical to understand postpartum-related neuropsychiatric illnesses and to maintain mental health in postpartum women.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: