2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Novel Mutations in Pilomatrixoma, CTNNB1 p.s45F, and FGFR2 p.s252L: A Report of Three Cases Diagnosed by Fine-Needle Aspiration Biopsy, with Review of the Literature.

  • Cristina Aparecida Troques da Silveira Mitteldorf‎ et al.
  • Case reports in genetics‎
  • 2020‎

Pilomatrixoma (calcifying epithelioma of Malherbe) is an uncommon benign skin appendageal tumor that differentiates toward hair matrix cells. It is misdiagnosed in up to 75% of cases by nondermatologists. Although the histopathological findings are well recognized and characteristic, diagnosis by fine-needle aspiration biopsy may be quite challenging. Several reports have emphasized the challenges in cytodiagnosis of pilomatrixoma, leading to a false-positive diagnosis. The lesions may show avidity for fludeoxyglucose on positron emission tomography/computed tomography scan, raising concern of a possible malignant neoplasm. CTNNB1 mutations have been reported in a high percentage of pilomatrixomas. Expression of β-catenin, the protein encoded by CTNNB1, is also frequently observed. To determine if routine cytological specimens can be successfully used to perform additional investigation and support or confirm the diagnosis in three cases of pilomatrixoma, we performed molecular analysis and immunohistochemistry to search for CTNNB1 mutation and β-catenin, respectively. β-Catenin positivity by immunohistochemistry was observed in basaloid cells in all three cases. Exon 3 mutations in CTNNB1 were detected in all cases. In addition, we detected a fibroblast growth factor receptor 2 (FGFR2) mutation in one of the cases. We reviewed the literature and present the clinical and morphological characteristics that must be considered along with other findings to accurately achieve the correct diagnosis, in correlation with the results of the ancillary technique. In conclusion, routine cytological specimens can be successfully used to perform additional investigations and support cytodiagnosis in difficult cases.


Genetic basis of calcifying cystic odontogenic tumors.

  • Akane Yukimori‎ et al.
  • PloS one‎
  • 2017‎

Calcifying cystic odontogenic tumors (CCOTs) are benign cystic tumors that form abnormally keratinized ghost cells. Mutations in CTNNB1, which encodes beta-catenin, have been implicated in the development of these tumors, but a causal relationship has not been definitively established. Thus, mutational hot spots in 50 cancer genes were examined by targeted next-generation sequencing in 11 samples of CCOT. Mutations in CTNNB1, but not in other genes, were observed in 10 of 11 cases. These mutations constitutively activate beta-catenin signaling by abolishing the phosphorylation sites Asp32, Ser33, or Ser37, and are similar to those reported in pilomatrixoma and adamantinomatous craniopharyngioma. In contrast, BRAF or NRAS mutations were observed in 12 and two control samples of ameloblastoma, respectively. In HEK293 cells, overexpression of mutated CTNNB1 also upregulated hair keratin, a marker of ghost cells. Furthermore, ghost cells were present in two cases of ameloblastoma with BRAF and CTNNB1 mutations, indicating that ghost cells form due to mutations in CTNNB1. The data suggest that mutations in CTNNB1 are the major driver mutations of CCOT, and that CCOT is the genetic analog of pilomatrixoma and adamantinomatous craniopharyngioma in odontogenic tissue.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: