Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 70 papers

Dynamic Anemia Status from Infancy to Preschool-Age: Evidence from Rural China.

  • Lei Wang‎ et al.
  • International journal of environmental research and public health‎
  • 2019‎

Anemia is a serious nutritional deficiency among infants and toddlers in rural China. However, it is unclear how the anemia status changes among China's rural children as they age. This study investigates the prevalence of anemia as children grow from infancy to preschool-age, as well as the dynamic anemia status of children over time. We conducted longitudinal surveys of 1170 children in the Qinba Mountain Area of China in 2013, 2015 and 2017. The results show that 51% of children were anemic in infancy (6-12 months), 24% in toddlerhood (22-30 months) and 19% at preschool-age (49-65 months). An even larger share of children (67%) suffered from anemia at some point over the course of study. The data also show that although only 4% of children were persistently anemic from infancy to preschool-age, 8% of children saw their anemia status deteriorate. We further found that children may be at greater risk for developing anemia, or for having persistent anemia, during the period between toddlerhood and preschool-age. Combined with the finding that children with improving anemia status showed higher cognition than persistently anemic children, there is an urgent need for effective nutritional interventions to combat anemia as children grow, especially between toddlerhood and preschool age.


Mechanochemical Formation of Protein Nanofibril: Graphene Nanoplatelet Hybrids and Their Thermoelectric Properties.

  • Lei Wang‎ et al.
  • ACS sustainable chemistry & engineering‎
  • 2020‎

Hybrids between biopolymeric materials and low-cost conductive carbon-based materials are interesting materials for applications in electronics, potentially reducing the need for materials that generate environmentally harmful electronic waste. Herein we investigate a scalable ball-milling method to form graphene nanoplatelets (GNPs) by milling graphite flakes with aqueous dispersions of proteins or protein nanofibrils (PNFs). Aqueous GNP dispersions with high concentrations (up to 3.2 mg mL-1) are obtained under appropriate conditions. The PNFs/proteins help to exfoliate graphite and stabilize the resulting GNP dispersions by electrostatic repulsion. PNFs are prepared from hen egg white lysozyme (HEWL) and β-lactoglobulin (BLG). The GNP dispersions can be processed into free-standing films having an electrical conductivity of up to 110 S m-1. Alternatively, the GNP dispersions can be drop-cast on PET substrates, resulting in mechanically flexible films having an electrical conductivity of up to 65 S m-1. The drop-cast films are investigated regarding their thermoelectric properties, having Seebeck coefficients of about 50 μV K-1. By annealing drop-cast films and thus carbonizing residual PNFs, an increase of electrical conductivity, coupled with a modest decrease in Seebeck coefficient, is obtained resulting in materials displaying power factors of up to 4.6 μW m-1 K-2.


Creating enzymes and self-sufficient cells for biosynthesis of the non-natural cofactor nicotinamide cytosine dinucleotide.

  • Xueying Wang‎ et al.
  • Nature communications‎
  • 2021‎

Nicotinamide adenine dinucleotide (NAD) and its reduced form are indispensable cofactors in life. Diverse NAD mimics have been developed for applications in chemical and biological sciences. Nicotinamide cytosine dinucleotide (NCD) has emerged as a non-natural cofactor to mediate redox transformations, while cells are fed with chemically synthesized NCD. Here, we create NCD synthetase (NcdS) by reprograming the substrate binding pockets of nicotinic acid mononucleotide (NaMN) adenylyltransferase to favor cytidine triphosphate and nicotinamide mononucleotide over their regular substrates ATP and NaMN, respectively. Overexpression of NcdS alone in the model host Escherichia coli facilitated intracellular production of NCD, and higher NCD levels up to 5.0 mM were achieved upon further pathway regulation. Finally, the non-natural cofactor self-sufficiency was confirmed by mediating an NCD-linked metabolic circuit to convert L-malate into D-lactate. NcdS together with NCD-linked enzymes offer unique tools and opportunities for intriguing studies in chemical biology and synthetic biology.


In silico drug repositioning using deep learning and comprehensive similarity measures.

  • Hai-Cheng Yi‎ et al.
  • BMC bioinformatics‎
  • 2021‎

Drug repositioning, meanings finding new uses for existing drugs, which can accelerate the processing of new drugs research and development. Various computational methods have been presented to predict novel drug-disease associations for drug repositioning based on similarity measures among drugs and diseases. However, there are some known associations between drugs and diseases that previous studies not utilized.


Direct Growth of Graphene on Silicon by Metal-Free Chemical Vapor Deposition.

  • Lixuan Tai‎ et al.
  • Nano-micro letters‎
  • 2018‎

The metal-free synthesis of graphene on single-crystal silicon substrates, the most common commercial semiconductor, is of paramount significance for many technological applications. In this work, we report the growth of graphene directly on an upside-down placed, single-crystal silicon substrate using metal-free, ambient-pressure chemical vapor deposition. By controlling the growth temperature, in-plane propagation, edge-propagation, and core-propagation, the process of graphene growth on silicon can be identified. This process produces atomically flat monolayer or bilayer graphene domains, concave bilayer graphene domains, and bulging few-layer graphene domains. This work would be a significant step toward the synthesis of large-area and layer-controlled, high-quality graphene on single-crystal silicon substrates.


Inert Gas Deactivates Protein Activity by Aggregation.

  • Lijuan Zhang‎ et al.
  • Scientific reports‎
  • 2017‎

Biologically inert gases play important roles in the biological functionality of proteins. However, researchers lack a full understanding of the effects of these gases since they are very chemically stable only weakly absorbed by biological tissues. By combining X-ray fluorescence, particle sizing and molecular dynamics (MD) simulations, this work shows that the aggregation of these inert gases near the hydrophobic active cavity of pepsin should lead to protein deactivation. Micro X-ray fluorescence spectra show that a pepsin solution can contain a high concentration of Xe or Kr after gassing, and that the gas concentrations decrease quickly with degassing time. Biological activity experiments indicate a reversible deactivation of the protein during this gassing and degassing. Meanwhile, the nanoparticle size measurements reveal a higher number of "nanoparticles" in gas-containing pepsin solution, also supporting the possible interaction between inert gases and the protein. Further, MD simulations indicate that gas molecules can aggregate into a tiny bubble shape near the hydrophobic active cavity of pepsin, suggesting a mechanism for reducing their biological function.


NLPEI: A Novel Self-Interacting Protein Prediction Model Based on Natural Language Processing and Evolutionary Information.

  • Li-Na Jia‎ et al.
  • Evolutionary bioinformatics online‎
  • 2020‎

The study of protein self-interactions (SIPs) can not only reveal the function of proteins at the molecular level, but is also crucial to understand activities such as growth, development, differentiation, and apoptosis, providing an important theoretical basis for exploring the mechanism of major diseases. With the rapid advances in biotechnology, a large number of SIPs have been discovered. However, due to the long period and high cost inherent to biological experiments, the gap between the identification of SIPs and the accumulation of data is growing. Therefore, fast and accurate computational methods are needed to effectively predict SIPs. In this study, we designed a new method, NLPEI, for predicting SIPs based on natural language understanding theory and evolutionary information. Specifically, we first understand the protein sequence as natural language and use natural language processing algorithms to extract its features. Then, we use the Position-Specific Scoring Matrix (PSSM) to represent the evolutionary information of the protein and extract its features through the Stacked Auto-Encoder (SAE) algorithm of deep learning. Finally, we fuse the natural language features of proteins with evolutionary features and make accurate predictions by Extreme Learning Machine (ELM) classifier. In the SIPs gold standard data sets of human and yeast, NLPEI achieved 94.19% and 91.29% prediction accuracy. Compared with different classifier models, different feature models, and other existing methods, NLPEI obtained the best results. These experimental results indicated that NLPEI is an effective tool for predicting SIPs and can provide reliable candidates for biological experiments.


Prediction of drug-target interactions from multi-molecular network based on LINE network representation method.

  • Bo-Ya Ji‎ et al.
  • Journal of translational medicine‎
  • 2020‎

The prediction of potential drug-target interactions (DTIs) not only provides a better comprehension of biological processes but also is critical for identifying new drugs. However, due to the disadvantages of expensive and high time-consuming traditional experiments, only a small section of interactions between drugs and targets in the database were verified experimentally. Therefore, it is meaningful and important to develop new computational methods with good performance for DTIs prediction. At present, many existing computational methods only utilize the single type of interactions between drugs and proteins without paying attention to the associations and influences with other types of molecules.


A Novel Method to Predict Drug-Target Interactions Based on Large-Scale Graph Representation Learning.

  • Bo-Wei Zhao‎ et al.
  • Cancers‎
  • 2021‎

Identification of drug-target interactions (DTIs) is a significant step in the drug discovery or repositioning process. Compared with the time-consuming and labor-intensive in vivo experimental methods, the computational models can provide high-quality DTI candidates in an instant. In this study, we propose a novel method called LGDTI to predict DTIs based on large-scale graph representation learning. LGDTI can capture the local and global structural information of the graph. Specifically, the first-order neighbor information of nodes can be aggregated by the graph convolutional network (GCN); on the other hand, the high-order neighbor information of nodes can be learned by the graph embedding method called DeepWalk. Finally, the two kinds of feature are fed into the random forest classifier to train and predict potential DTIs. The results show that our method obtained area under the receiver operating characteristic curve (AUROC) of 0.9455 and area under the precision-recall curve (AUPR) of 0.9491 under 5-fold cross-validation. Moreover, we compare the presented method with some existing state-of-the-art methods. These results imply that LGDTI can efficiently and robustly capture undiscovered DTIs. Moreover, the proposed model is expected to bring new inspiration and provide novel perspectives to relevant researchers.


Heparin-network-mediated long-lasting coatings on intravascular catheters for adaptive antithrombosis and antibacterial infection.

  • Lin Liu‎ et al.
  • Nature communications‎
  • 2024‎

Bacteria-associated infections and thrombosis, particularly catheter-related bloodstream infections and catheter-related thrombosis, are life-threatening complications. Herein, we utilize a concise assembly of heparin sodium with organosilicon quaternary ammonium surfactant to fabricate a multifunctional coating complex. In contrast to conventional one-time coatings, the complex attaches to medical devices with arbitrary shapes and compositions through a facile dipping process and further forms robust coatings to treat catheter-related bloodstream infections and thrombosis simultaneously. Through their robustness and adaptively dissociation, coatings not only exhibit good stability under extreme conditions but also significantly reduce thrombus adhesion by 60%, and shows broad-spectrum antibacterial activity ( > 97%) in vitro and in vivo. Furthermore, an ex vivo rabbit model verifies that the coated catheter has the potential to prevent catheter-related bacteremia during implantation. This substrate-independent and portable long-lasting multifunctional coating can be employed to meet the increasing clinical demands for combating catheter-related bloodstream infections and thrombosis.


Prediction of Drug-Target Interactions From Multi-Molecular Network Based on Deep Walk Embedding Model.

  • Zhan-Heng Chen‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2020‎

Predicting drug-target interactions (DTIs) is crucial in innovative drug discovery, drug repositioning and other fields. However, there are many shortcomings for predicting DTIs using traditional biological experimental methods, such as the high-cost, time-consumption, low efficiency, and so on, which make these methods difficult to widely apply. As a supplement, the in silico method can provide helpful information for predictions of DTIs in a timely manner. In this work, a deep walk embedding method is developed for predicting DTIs from a multi-molecular network. More specifically, a multi-molecular network, also called molecular associations network, is constructed by integrating the associations among drug, protein, disease, lncRNA, and miRNA. Then, each node can be represented as a behavior feature vector by using a deep walk embedding method. Finally, we compared behavior features with traditional attribute features on an integrated dataset by using various classifiers. The experimental results revealed that the behavior feature could be performed better on different classifiers, especially on the random forest classifier. It is also demonstrated that the use of behavior information is very helpful for addressing the problem of sequences containing both self-interacting and non-interacting pairs of proteins. This work is not only extremely suitable for predicting DTIs, but also provides a new perspective for the prediction of other biomolecules' associations.


Norcantharidin overcomes vemurafenib resistance in melanoma by inhibiting pentose phosphate pathway and lipogenesis via downregulating the mTOR pathway.

  • Lei Wang‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Melanoma is the most aggressive type of skin cancer with a high incidence and low survival rate. More than half of melanomas present the activating BRAF mutations, along which V600E mutant represents 70%-90%. Vemurafenib (Vem) is an FDA-approved small-molecule kinase inhibitor that selectively targets activated BRAF V600E and inhibits its activity. However, the majority of patients treated with Vem develop acquired resistance. Hence, this study aims to explore a new treatment strategy to overcome the Vem resistance. Here, we found that a potential anticancer drug norcantharidin (NCTD) displayed a more significant proliferation inhibitory effect against Vem-resistant melanoma cells (A375R) than the parental melanoma cells (A375), which promised to be a therapeutic agent against BRAF V600E-mutated and acquired Vem-resistant melanoma. The metabolomics analysis showed that NCTD could, especially reverse the upregulation of pentose phosphate pathway and lipogenesis resulting from the Vem resistance. In addition, the transcriptomic analysis showed a dramatical downregulation in genes related to lipid metabolism and mammalian target of the rapamycin (mTOR) signaling pathway in A375R cells, but not in A375 cells, upon NCTD treatment. Moreover, NCTD upregulated butyrophilin (BTN) family genes, which played important roles in modulating T-cell response. Consistently, we found that Vem resistance led to an obvious elevation of the p-mTOR expression, which could be remarkably reduced by NCTD treatment. Taken together, NCTD may serve as a promising therapeutic option to resolve the problem of Vem resistance and to improve patient outcomes by combining with immunomodulatory therapy.


Predicting cervical cancer target motion using a multivariate regression model to enable patient selection for adaptive external beam radiotherapy.

  • Lei Wang‎ et al.
  • Physics and imaging in radiation oncology‎
  • 2024‎

Interfraction motion during cervical cancer radiotherapy is substantial in some patients, minimal in others. Non-adaptive plans may miss the target and/or unnecessarily irradiate normal tissue. Adaptive radiotherapy leads to superior dose-volume metrics but is resource-intensive. The aim of this study was to predict target motion, enabling patient selection and efficient resource allocation.


SANE: A sequence combined attentive network embedding model for COVID-19 drug repositioning.

  • Xiaorui Su‎ et al.
  • Applied soft computing‎
  • 2021‎

The COVID-19 has now spread all over the world and causes a huge burden for public health and world economy. Drug repositioning has become a promising treatment strategy in COVID-19 crisis because it can shorten drug development process, reduce pharmaceutical costs and reposition approval drugs. Existing computational methods only focus on single information, such as drug and virus similarity or drug-virus network feature, which is not sufficient to predict potential drugs. In this paper, a sequence combined attentive network embedding model SANE is proposed for identifying drugs based on sequence features and network features. On the one hand, drug SMILES and virus sequence features are extracted by encoder-decoder in SANE as node initial embedding in drug-virus network. On the other hand, SANE obtains fields for each node by attention-based Depth-First-Search (DFS) to reduce noises and improve efficiency in representation learning and adopts a bottom-up aggregation strategy to learn node network representation from selected fields. Finally, a forward neural network is used for classifying. Experiment results show that SANE has achieved the performance with 81.98% accuracy and 0.8961 AUC value and outperformed state-of-the-art baselines. Further case study on COVID-19 indicates that SANE has a strong predictive ability since 25 of the top 40 (62.5%) drugs are verified by valuable dataset and literatures. Therefore, SANE is powerful to reposition drugs for COVID-19 and provides a new perspective for drug repositioning.


Incorporating chemical sub-structures and protein evolutionary information for inferring drug-target interactions.

  • Lei Wang‎ et al.
  • Scientific reports‎
  • 2020‎

Accumulating evidence has shown that drug-target interactions (DTIs) play a crucial role in the process of genomic drug discovery. Although biological experimental technology has made great progress, the identification of DTIs is still very time-consuming and expensive nowadays. Hence it is urgent to develop in silico model as a supplement to the biological experiments to predict the potential DTIs. In this work, a new model is designed to predict DTIs by incorporating chemical sub-structures and protein evolutionary information. Specifically, we first use Position-Specific Scoring Matrix (PSSM) to convert the protein sequence into the numerical descriptor containing biological evolutionary information, then use Discrete Cosine Transform (DCT) algorithm to extract the hidden features and integrate them with the chemical sub-structures descriptor, and finally utilize Rotation Forest (RF) classifier to accurately predict whether there is interaction between the drug and the target protein. In the 5-fold cross-validation (CV) experiment, the average accuracy of the proposed model on the benchmark datasets of Enzymes, Ion Channels, GPCRs and Nuclear Receptors reached 0.9140, 0.8919, 0.8724 and 0.8111, respectively. In order to fully evaluate the performance of the proposed model, we compare it with different feature extraction model, classifier model, and other state-of-the-art models. Furthermore, we also implemented case studies. As a result, 8 of the top 10 drug-target pairs with the highest prediction score were confirmed by related databases. These excellent results indicate that the proposed model has outstanding ability in predicting DTIs and can provide reliable candidates for biological experiments.


Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method.

  • Bin Yu‎ et al.
  • Oncotarget‎
  • 2017‎

Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli, and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs.


Construction and Comprehensive Analysis of a Molecular Association Network via lncRNA-miRNA -Disease-Drug-Protein Graph.

  • Zhen-Hao Guo‎ et al.
  • Cells‎
  • 2019‎

One key issue in the post-genomic era is how to systematically describe the associations between small molecule transcripts or translations inside cells. With the rapid development of high-throughput "omics" technologies, the achieved ability to detect and characterize molecules with other molecule targets opens the possibility of investigating the relationships between different molecules from a global perspective. In this article, a molecular association network (MAN) is constructed and comprehensively analyzed by integrating the associations among miRNA, lncRNA, protein, drug, and disease, in which any kind of potential associations can be predicted. More specifically, each node in MAN can be represented as a vector by combining two kinds of information including the attribute of the node itself (e.g., sequences of ncRNAs and proteins, semantics of diseases and molecular fingerprints of drugs) and the behavior of the node in the complex network (associations with other nodes). A random forest classifier is trained to classify and predict new interactions or associations between biomolecules. In the experiment, the proposed method achieved a superb performance with an area under curve (AUC) of 0.9735 under a five-fold cross-validation, which showed that the proposed method could provide new insight for exploration of the molecular mechanisms of disease and valuable clues for disease treatment.


Accurate prediction of subcellular location of apoptosis proteins combining Chou's PseAAC and PsePSSM based on wavelet denoising.

  • Bin Yu‎ et al.
  • Oncotarget‎
  • 2017‎

Apoptosis proteins subcellular localization information are very important for understanding the mechanism of programmed cell death and the development of drugs. The prediction of subcellular localization of an apoptosis protein is still a challenging task because the prediction of apoptosis proteins subcellular localization can help to understand their function and the role of metabolic processes. In this paper, we propose a novel method for protein subcellular localization prediction. Firstly, the features of the protein sequence are extracted by combining Chou's pseudo amino acid composition (PseAAC) and pseudo-position specific scoring matrix (PsePSSM), then the feature information of the extracted is denoised by two-dimensional (2-D) wavelet denoising. Finally, the optimal feature vectors are input to the SVM classifier to predict subcellular location of apoptosis proteins. Quite promising predictions are obtained using the jackknife test on three widely used datasets and compared with other state-of-the-art methods. The results indicate that the method proposed in this paper can remarkably improve the prediction accuracy of apoptosis protein subcellular localization, which will be a supplementary tool for future proteomics research.


A learning based framework for diverse biomolecule relationship prediction in molecular association network.

  • Zhen-Hao Guo‎ et al.
  • Communications biology‎
  • 2020‎

Abundant life activities are maintained by various biomolecule relationships in human cells. However, many previous computational models only focus on isolated objects, without considering that cell is a complete entity with ample functions. Inspired by holism, we constructed a Molecular Associations Network (MAN) including 9 kinds of relationships among 5 types of biomolecules, and a prediction model called MAN-GF. More specifically, biomolecules can be represented as vectors by the algorithm called biomarker2vec which combines 2 kinds of information involved the attribute learned by k-mer, etc and the behavior learned by Graph Factorization (GF). Then, Random Forest classifier is applied for training, validation and test. MAN-GF obtained a substantial performance with AUC of 0.9647 and AUPR of 0.9521 under 5-fold Cross-validation. The results imply that MAN-GF with an overall perspective can act as ancillary for practice. Besides, it holds great hope to provide a new insight to elucidate the regulatory mechanisms.


iMDA-BN: Identification of miRNA-disease associations based on the biological network and graph embedding algorithm.

  • Kai Zheng‎ et al.
  • Computational and structural biotechnology journal‎
  • 2020‎

Benefiting from advances in high-throughput experimental techniques, important regulatory roles of miRNAs, lncRNAs, and proteins, as well as biological property information, are gradually being complemented. As the key data support to promote biomedical research, domain knowledge such as intermolecular relationships that are increasingly revealed by molecular genome-wide analysis is often used to guide the discovery of potential associations. However, the method of performing network representation learning from the perspective of the global biological network is scarce. These methods cover a very limited type of molecular associations and are therefore not suitable for more comprehensive analysis of molecular network representation information. In this study, we propose a computational model based on the Biological network for predicting potential associations between miRNAs and diseases called iMDA-BN. The iMDA-BN has three significant advantages: I) It uses a new method to describe disease and miRNA characteristics which analyzes node representation information for disease and miRNA from the perspective of biological networks. II) It can predict unproven associations even if miRNAs and diseases do not appear in the biological network. III) Accurate description of miRNA characteristics from biological properties based on high-throughput sequence information. The iMDA-BN predictor achieves an AUC of 0.9145 and an accuracy of 84.49% on the miRNA-disease association baseline dataset, and it can also achieve an AUC of 0.8765 and an accuracy of 80.96% when predicting unknown diseases and miRNAs in the biological network. Compared to existing miRNA-disease association prediction methods, iMDA-BN has higher accuracy and the advantage of predicting unknown associations. In addition, 45, 49, and 49 of the top 50 miRNA-disease associations with the highest predicted scores were confirmed in the case studies, respectively.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: