Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Life-span characterization of epilepsy and comorbidities in Dravet syndrome mice carrying a targeted deletion of exon 1 of the Scn1a gene.

  • Rogério R Gerbatin‎ et al.
  • Experimental neurology‎
  • 2022‎

Dravet Syndrome (DS) is a catastrophic form of paediatric epilepsy associated with multiple comorbidities mainly caused by mutations in the SCN1A gene. DS progresses in three different phases termed febrile, worsening and stabilization stage. Mice that are haploinsufficient for Scn1a faithfully model each stage of DS, although various aspects have not been fully described, including the temporal appearance and sex differences of the epilepsy and comorbidities. The aim of the present study was to investigate the epilepsy landscape according to the progression of DS and the long-term co-morbidities in the Scn1a(+/-)tm1Kea DS mouse line that are not fully understood yet.


Expression profiling the microRNA response to epileptic preconditioning identifies miR-184 as a modulator of seizure-induced neuronal death.

  • Ross C McKiernan‎ et al.
  • Experimental neurology‎
  • 2012‎

Brief seizures (epileptic/seizure preconditioning) are capable of activating endogenous protective pathways in the brain which can temporarily generate a damage-refractory state against subsequent and otherwise harmful episodes of prolonged seizures (tolerance). Altered expression of microRNAs, a class of non-coding RNAs that function post-transcriptionally to regulate mRNA translation has recently been implicated in the molecular mechanism of epileptic tolerance. Here we characterized the effect of seizure preconditioning induced by low-dose systemic kainic acid on microRNA expression in the hippocampus of mice. Seizure preconditioning resulted in up-regulation of 25 mature microRNAs in the CA3 subfield of the mouse hippocampus, with the highest levels detected for miR-184. This finding was supported by real time PCR and in situ hybridization showing increased neuronal miR-184 levels and a reduction in protein levels of a miR-184 target. Inhibiting miR-184 expression in vivo resulted in the emergence of neuronal death after preconditioning seizures and increased seizure-induced neuronal death following status epilepticus in previously preconditioned animals, without altered electrographic seizure durations. The present study suggests miRNA up-regulation after preconditioning may contribute to development of epileptic tolerance and identifies miR-184 as a novel contributor to neuronal survival following both mild and severe seizures.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: