Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Evaluation of electric phrenic nerve stimulation patterns for mechanical ventilation: a pilot study.

  • Arnhold Lohse‎ et al.
  • Scientific reports‎
  • 2023‎

Diaphragm atrophy is a common side effect of mechanical ventilation and results in prolonged weaning. Electric phrenic nerve stimulation presents a possibility to avoid diaphragm atrophy by keeping the diaphragm conditioned in sedated patients. There is a need of further investigation on how to set stimulation parameters to achieve sufficient ventilation. A prototype system is presented with a systematic evaluation for stimulation pattern adjustments. The main indicator for efficient stimulation was the tidal volume. The evaluation was performed in two pig models. As a major finding, the results for biphasic pulses were more consistent than for alternating pulses. The tidal volume increased for a range of pulse frequency and pulse width until reaching a plateau at 80-120 Hz and 0.15 ms. Furthermore, the generated tidal volume and the stimulation pulse frequency were significantly correlated (0.42-0.84, [Formula: see text]). The results show which stimulation parameter combinations generate the highest tidal volume. We established a guideline on how to set stimulation parameters. The guideline is helpful for future clinical applications of phrenic nerve stimulation.


Long-term course of phrenic nerve injury after cryoballoon ablation of atrial fibrillation.

  • Michifumi Tokuda‎ et al.
  • Scientific reports‎
  • 2021‎

While phrenic nerve palsy (PNP) due to cryoballoon pulmonary vein isolation (PVI) of atrial fibrillation (AF) was transient in most cases, no studies have reported the results of the long-term follow-up of PNP. This study aimed to summarize details and the results of long-term follow-up of PNP after cryoballoon ablation. A total of 511 consecutive AF patients who underwent cryoballoon ablation was included. During right-side PVI, the diaphragmatic compound motor action potential (CMAP) was reduced in 46 (9.0%) patients and PNP occurred in 29 (5.7%) patients (during right-superior PVI in 20 patients and right-inferior PVI in 9 patients). PNP occurred despite the absence of CMAP reduction in 0.6%. The PV anatomy, freezing parameters and the operator's proficiency were not predictors of PNP. While PNP during RSPVI persisted more than 4 years in 3 (0.6%) patients, all PNP occurred during RIPVI recovered until one year after the ablation. However, there was no significant difference in the recovery duration from PNP between PNP during RSPVI and RIPVI. PNP occurred during cryoballoon ablation in 5.7%. While most patients recovered from PNP within one year after the ablation, PNP during RSPVI persisted more than 4 years in 0.6% of patients.


The human phrenic nerve serves as a morphological conduit for autonomic nerves and innervates the caval body of the diaphragm.

  • Thomas J M Verlinden‎ et al.
  • Scientific reports‎
  • 2018‎

Communicating fibres between the phrenic nerve and sympathetic nervous system may exist, but have not been characterized histologically and immunohistochemically, even though increased sympathetic activity due to phrenic nerve stimulation for central sleep apnoea may entail morbidity and mortality. We, therefore, conducted a histological study of the phrenic nerve to establish the presence of catecholaminergic fibres throughout their course. The entire phrenic nerves of 35 formalin-fixed human cadavers were analysed morphometrically and immunohistochemically. Furthermore, the right abdominal phrenic nerve was serially sectioned and reconstructed. The phrenic nerve contained 3 ± 2 fascicles in the neck that merged to form a single fascicle in the thorax and split again into 3 ± 3 fascicles above the diaphragm. All phrenic nerves contained catecholaminergic fibres, which were distributed homogenously or present as distinct areas within a fascicle or as separate fascicles. The phrenicoabdominal branch of the right phrenic nerve is a branch of the celiac plexus and, therefore, better termed the "phrenic branch of the celiac plexus". The wall of the inferior caval vein in the diaphragm contained longitudinal strands of myocardium and atrial natriuretic peptide-positive paraganglia ("caval bodies") that where innervated by the right phrenic nerve.


Kinetics of ventilation-induced changes in diaphragmatic metabolism by bilateral phrenic pacing in a piglet model.

  • Thomas Breuer‎ et al.
  • Scientific reports‎
  • 2016‎

Perioperative necessity of deep sedation is inevitably associated with diaphragmatic inactivation. This study investigated 1) the feasibility of a new phrenic nerve stimulation method allowing early diaphragmatic activation even in deep sedation and, 2) metabolic changes within the diaphragm during mechanical ventilation compared to artificial activity. 12 piglets were separated into 2 groups. One group was mechanically ventilated for 12 hrs (CMV) and in the second group both phrenic nerves were stimulated via pacer wires inserted near the phrenic nerves to mimic spontaneous breathing (STIM). Lactate, pyruvate and glucose levels were measured continuously using microdialysis. Oxygen delivery and blood gases were measured during both conditions. Diaphragmatic stimulation generated sufficient tidal volumes in all STIM animals. Diaphragm lactate release increased in CMV transiently whereas in STIM lactate dropped during this same time point (2.6 vs. 0.9 mmol L-1 after 5:20 hrs; p < 0.001). CMV increased diaphragmatic pyruvate (40 vs. 146 μmol L-1 after 5:20 hrs between CMV and STIM; p < 0.0001), but not the lactate/pyruvate ratio. Diaphragmatic stimulation via regular electrodes is feasible to generate sufficient ventilation, even in deep sedation. Mechanical ventilation alters the metabolic state of the diaphragm, which might be one pathophysiologic origin of ventilator-induced diaphragmatic dysfunction. Occurrence of hypoxia was unlikely.


A Novel Inhibitor Prevents the Peripheral Neuroparalysis of Botulinum Neurotoxins.

  • Domenico Azarnia Tehran‎ et al.
  • Scientific reports‎
  • 2015‎

Botulinum neurotoxins (BoNTs) form a large class of potent and deadly neurotoxins. Given their growing number, it is of paramount importance to discover novel inhibitors targeting common steps of their intoxication process. Recently, EGA was shown to inhibit the action of bacterial toxins and viruses exhibiting a pH-dependent translocation step in mammalian cells, by interfering with their entry route. As BoNTs act in the cytosol of nerve terminals, the entry into an appropriate compartment wherefrom they translocate the catalytic moiety is essential for toxicity. Herein we propose an optimized procedure to synthesize EGA and we show that, in vitro, it prevents the neurotoxicity of different BoNT serotypes by interfering with their trafficking. Furthermore, in mice, EGA mitigates botulism symptoms induced by BoNT/A and significantly decreases the lethality of BoNT/B and BoNT/D. This opens the possibility of using EGA as a lead compound to develop novel inhibitors of botulinum neurotoxins.


Age-related fragmentation of the motor endplate is not associated with impaired neuromuscular transmission in the mouse diaphragm.

  • Silvia Willadt‎ et al.
  • Scientific reports‎
  • 2016‎

As mammals age, their neuromuscular junctions (NMJs) gradually change their form, acquiring an increasingly fragmented appearance consisting of numerous isolated regions of synaptic differentiation. It has been suggested that this remodelling is associated with impairment of neuromuscular transmission, and that this contributes to age-related muscle weakness in mammals, including humans. The underlying hypothesis, that increasing NMJ fragmentation is associated with impaired transmission, has never been directly tested. Here, by comparing the structure and function of individual NMJs, we show that neuromuscular transmission at the most highly fragmented NMJs in the diaphragms of old (26-28 months) mice is, if anything, stronger than in middle-aged (12-14 months) mice. We suggest that NMJ fragmentation per se is not a reliable indicator of impaired neuromuscular transmission.


The lesion site of organophosphorus-induced central apnea and the effects of antidotes.

  • Kazuhito Nomura‎ et al.
  • Scientific reports‎
  • 2023‎

Organophosphorus poisoning kills individuals by causing central apnea; however, the underlying cause of death remains unclear. Following findings that the pre-Bötzinger complex impairment alone does not account for central apnea, we analyzed the effect of paraoxon on the brainstem-spinal cord preparation, spanning the lower medulla oblongata to phrenic nucleus. Respiratory bursts were recorded by connecting electrodes to the ventral 4th cervical nerve root of excised brainstem-spinal cord preparations obtained from 6-day-old Sprague-Dawley rats. We observed changes in respiratory bursts when paraoxon, neostigmine, atropine, and 2-pyridine aldoxime methiodide were administered via bath application. The percentage of burst extinction in the paraoxon-poisoning group was 50% compared with 0% and 18.2% in the atropine and 2-pyridine aldoxime methiodide treatment groups, respectively. Both treatments notably mitigated the paraoxon-induced reduction in respiratory bursts. In the neostigmine group, similar to paraoxon, bursts stopped in 66.7% of cases but were fully reversed by atropine. This indicates that the primary cause of central apnea is muscarinic receptor-mediated in response to acetylcholine excess. Paraoxon-induced central apnea is hypothesized to result from neural abnormalities within the inferior medulla oblongata to the phrenic nucleus, excluding pre-Bötzinger complex. These antidotes antagonize central apnea, suggesting that they may be beneficial therapeutic agents.


A neuronal role of the Alanine-Serine-Cysteine-1 transporter (SLC7A10, Asc-1) for glycine inhibitory transmission and respiratory pattern.

  • Guillaume Mesuret‎ et al.
  • Scientific reports‎
  • 2018‎

The Alanine-Serine-Cysteine-1 transporter (SLC7A10, Asc-1) has been shown to play a role in synaptic availability of glycine although the exact mechanism remains unclear. We used electrophysiological recordings and biochemical experiments to investigate the role of Asc-1 transporter in glycinergic transmission in the brainstem respiratory network. Using both the Asc-1 substrate and transportable inhibitor D-isoleucine (D-Ile), and the non-transportable Asc-1 blocker Lu AE00527 (Lu), we found that D-Ile reduces glycinergic transmission and increases glycine release via hetero-exchange, whereas Lu has no acute effect on glycinergic synaptic transmission. Furthermore, D-Ile increases the frequency and reduces amplitude of the phrenic nerve activity in the arterially-perfused working heart brainstem preparation. These results suggest a role of Asc-1 in modulating presynaptic glycine levels that can impact on the respiratory network.


Motor axonopathies in a mouse model of Duchenne muscular dystrophy.

  • Justin S Dhindsa‎ et al.
  • Scientific reports‎
  • 2020‎

Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disease caused by deleterious mutations in the DMD gene which encodes the dystrophin protein. Skeletal muscle weakness and eventual muscle degradation due to loss of dystrophin are well-documented pathological hallmarks of DMD. In contrast, the neuropathology of this disease remains understudied despite the emerging evidence of neurological abnormalities induced by dystrophin loss. Using quantitative morphological analysis of nerve sections, we characterize axonopathies in the phrenic and hypoglossal (XII) nerves of mdx mice. We observe dysfunction in these nerves - which innervate the diaphragm and genioglossus respectively - that we propose contributes to respiratory failure, the most common cause of death in DMD. These observations highlight the importance in the further characterization of the neuropathology of DMD. Additionally, these observations underscore the necessity in correcting both the nervous system pathology in addition to skeletal muscle deficits to ameliorate this disease.


Acid-sensing ion channels are expressed in the ventrolateral medulla and contribute to central chemoreception.

  • Nana Song‎ et al.
  • Scientific reports‎
  • 2016‎

The role of acid-sensing ion channels (ASICs) in the ventrolateral medulla (VLM) remains uncertain. Here, we found that ASIC1a and ASIC2 are widely expressed in rat medulla, and the expression level is higher at neonatal stage as compared to adult stage. The two ASIC subunits co-localized in medualla neurons. Furthermore, pH reduction triggered typical ASIC-type currents in the medulla, including the VLM. These currents showed a pH50 value of 6.6 and were blocked by amiloride. Based on their sensitivity to psalmotoxin 1 (PcTx1) and zinc, homomeric ASIC1a and heteromeric ASIC1a/2 channels were likely responsible for acid-mediated currents in the mouse medulla. ASIC currents triggered by pH 5 disappeared in the VLM neurons from ASIC1-/-, but not ASIC2-/- mice. Activation of ASICs in the medulla also triggered neuronal excitation. Moreover, microinjection of artificial cerebrospinal fluid at a pH of 6.5 into the VLM increased integrated phrenic nerve discharge, inspiratory time and respiratory drive in rats. Both amiloride and PcTx1 inhibited the acid-induced stimulating effect on respiration. Collectively, our data suggest that ASICs are highly expressed in the medulla including the VLM, and activation of ASICs in the VLM contributes to central chemoreception.


Influence of extent of surgical resection on post-hepatectomy shoulder pain: an observational study.

  • Yuecheng Yang‎ et al.
  • Scientific reports‎
  • 2023‎

Shoulder pain frequently follows hepatectomy. However, the influence of surgical procedures on shoulder pain is unclear. In this observational study, patients who underwent hepatectomy were enrolled in Shanghai Cancer Center. Shoulder pain and surgical pain were assessed using the numeric rating scale 2 days after surgery. The incidence of shoulder pain was the outcome of the cohort study. Nested case-control analyses were further applied. Three hundred and twelve patients were finally enrolled in this study. Nested case-control analysis showed that there were no significant differences in the number of surgical segments between the two groups (P = 0.09). In addition, minor hepatectomy did not reduce the incidence of shoulder pain compared with major hepatectomy (P = 0.37). The drainage volume within 2 days after surgery was significantly more in those patients with shoulder pain (P = 0.017). In open surgery, surgical sites involving the right anterior lobe (OR (95% CI) 2.021 (1.075, 3.802), P = 0.029) and right posterior lobe (OR (95% CI) 2.322 (1.193, 4.522), P = 0.013) were both independent risk factors for shoulder pain. Left shoulder pain also occurred in patients who did not receive left lateral hepatectomy. The preventive phrenic nerve block was not suitable for post-hepatectomy shoulder pain. Stronger preventative intervention should be used in those high-risk patients.


Effect of protracted dexamethasone exposure and its withdrawal on rocuronium-induced neuromuscular blockade and sugammadex reversal: an ex vivo rat study.

  • Seok Kyeong Oh‎ et al.
  • Scientific reports‎
  • 2019‎

Studies have reported that protracted dexamethasone treatment induces resistance to nondepolarizing neuromuscular blocking agents (NMBAs) and the association with nicotinic acetylcholine receptors in the diaphragm of rats. Here, we investigated the effect of protracted dexamethasone administration on the sensitivity to rocuronium and the recovery profile when reversed by sugammadex; additionally, we observed the recovery period of pharmacodynamic change after withdrawal. Sprague-Dawley rats received daily intraperitoneal injections of dexamethasone or saline for 14 days. On days 1, 3, and 7 after the last dexamethasone treatment (Dexa1, Dexa3, and Dexa7, respectively) or 1 day after saline (control group), the phrenic nerve-hemidiaphragm preparation was dissected for assay. The dose-response curve of rocuronium in Dexa1 was shifted to the right compared to controls, but curves in Dexa3 and Dexa7 were not significantly different. Groups were not significantly different in attaining the train-of-four ratio ≥ 0.9, but the recovery index in Dexa7 was shorter than that in control and Dexa1. Recovery profiles (period of sugammadex reversal) were not correlated with resistance properties but rather with total administered drugs (binding capacity of NMBAs and sugammadex). Protracted dexamethasone exposure induced resistance to rocuronium but seemed to have no effect on sugammadex reversal in the rat diaphragm.


Smad3 initiates oxidative stress and proteolysis that underlies diaphragm dysfunction during mechanical ventilation.

  • Huibin Tang‎ et al.
  • Scientific reports‎
  • 2017‎

Prolonged use of mechanical ventilation (MV) leads to atrophy and dysfunction of the major inspiratory muscle, the diaphragm, contributing to ventilator dependence. Numerous studies have shown that proteolysis and oxidative stress are among the major effectors of ventilator-induced diaphragm muscle dysfunction (VIDD), but the upstream initiator(s) of this process remain to be elucidated. We report here that periodic diaphragm contraction via phrenic nerve stimulation (PNS) substantially reduces MV-induced proteolytic activity and oxidative stress in the diaphragm. We show that MV rapidly induces phosphorylation of Smad3, and PNS nearly completely prevents this effect. In cultured cells, overexpressed Smad3 is sufficient to induce oxidative stress and protein degradation, whereas inhibition of Smad3 activity suppresses these events. In rats subjected to MV, inhibition of Smad3 activity by SIS3 suppresses oxidative stress and protein degradation in the diaphragm and prevents the reduction in contractility that is induced by MV. Smad3's effect appears to link to STAT3 activity, which we previously identified as a regulator of VIDD. Inhibition of Smad3 suppresses STAT3 signaling both in vitro and in vivo. Thus, MV-induced diaphragm inactivity initiates catabolic changes via rapid activation of Smad3 signaling. An early intervention with PNS and/or pharmaceutical inhibition of Smad3 may prevent clinical VIDD.


Second-generation cryoballoon versus contact force radiofrequency ablation for atrial fibrillation: an updated meta-analysis of evidence from randomized controlled trials.

  • Chenxia Wu‎ et al.
  • Scientific reports‎
  • 2021‎

Catheter ablation has been recommended for patients with symptomatic atrial fibrillation (AF), with pulmonary vein isolation being the cornerstone of the ablation procedure. Newly developed technologies, such as cryoballoon ablation with a second-generation cryoballoon (CB2) and the contact force radiofrequency (CF-RF) ablation, have been introduced in recent years to overcome the shortcomings of the widely used RF ablation approach. However, high-quality results comparing CB2 and CF-RF remain controversial. Thus, we conducted this meta-analysis to assess the efficacy and safety between CB2 and CF-RF using evidence from randomized controlled trials (RCTs). Databases including Embase, PubMed, the Cochrane Library, and ClinicalTrials.gov were systematically searched from their date of inception to January 2021. Only RCTs that met the inclusion criteria were included for analysis. The primary outcome of interest was freedom from atrial tachyarrhythmia (AT) during follow-up. Secondary outcomes included procedure-related complications, procedure time and fluoroscopy time. Six RCTs with a total of 987 patients were finally enrolled. No significant differences were found between CB2 and CF-RF in terms of freedom from AT (relative risk [RR] = 1.03, 95% confidence interval [CI] 0.92-1.14, p = 0.616) or total procedural-related complications (RR = 1.25, 95% CI 0.69-2.27, p = 0.457). CB2 treatment was associated with a significantly higher risk of phrenic nerve palsy (PNP) than CF-RF (RR = 4.93, 95% CI 1.12-21.73, p = 0.035). The occurrences of pericardial effusion/tamponade and vascular complications were comparable between the CB2 and CF-RF treatments (RR = 0.41, p = 0.398; RR = 0.82, p = 0.632). In addition, CB2 treatment had a significantly shorter procedure time than CF-RF (weighted mean difference [WMD] = - 20.75 min, 95% CI - 25.44 ~ - 16.05 min, P < 0.001), whereas no difference was found in terms of fluoroscopy time (WMD = 4.63 min, p = 0.179). CB2 and CF-RF treatment are comparable for AF patients regarding freedom from AT and procedure-related complications. Compared to CF-RF, CB2 treatment was associated with a shorter procedure time but a higher incidence of PNP. Further large-scale studies are warranted to compare these two techniques and provide an up-to-date recommendation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: