Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

CHD2 variants are a risk factor for photosensitivity in epilepsy.

  • Elizabeth C Galizia‎ et al.
  • Brain : a journal of neurology‎
  • 2015‎

Photosensitivity is a heritable abnormal cortical response to flickering light, manifesting as particular electroencephalographic changes, with or without seizures. Photosensitivity is prominent in a very rare epileptic encephalopathy due to de novo CHD2 mutations, but is also seen in epileptic encephalopathies due to other gene mutations. We determined whether CHD2 variation underlies photosensitivity in common epilepsies, specific photosensitive epilepsies and individuals with photosensitivity without seizures. We studied 580 individuals with epilepsy and either photosensitive seizures or abnormal photoparoxysmal response on electroencephalography, or both, and 55 individuals with photoparoxysmal response but no seizures. We compared CHD2 sequence data to publicly available data from 34 427 individuals, not enriched for epilepsy. We investigated the role of unique variants seen only once in the entire data set. We sought CHD2 variants in 238 exomes from familial genetic generalized epilepsies, and in other public exome data sets. We identified 11 unique variants in the 580 individuals with photosensitive epilepsies and 128 unique variants in the 34 427 controls: unique CHD2 variation is over-represented in cases overall (P = 2.17 × 10(-5)). Among epilepsy syndromes, there was over-representation of unique CHD2 variants (3/36 cases) in the archetypal photosensitive epilepsy syndrome, eyelid myoclonia with absences (P = 3.50 × 10(-4)). CHD2 variation was not over-represented in photoparoxysmal response without seizures. Zebrafish larvae with chd2 knockdown were tested for photosensitivity. Chd2 knockdown markedly enhanced mild innate zebrafish larval photosensitivity. CHD2 mutation is the first identified cause of the archetypal generalized photosensitive epilepsy syndrome, eyelid myoclonia with absences. Unique CHD2 variants are also associated with photosensitivity in common epilepsies. CHD2 does not encode an ion channel, opening new avenues for research into human cortical excitability.


Light-induced depigmentation in planarians models the pathophysiology of acute porphyrias.

  • Bradford M Stubenhaus‎ et al.
  • eLife‎
  • 2016‎

Porphyrias are disorders of heme metabolism frequently characterized by extreme photosensitivity. This symptom results from accumulation of porphyrins, tetrapyrrole intermediates in heme biosynthesis that generate reactive oxygen species when exposed to light, in the skin of affected individuals. Here we report that in addition to producing an ommochrome body pigment, the planarian flatworm Schmidtea mediterranea generates porphyrins in its subepithelial pigment cells under physiological conditions, and that this leads to pigment cell loss when animals are exposed to intense visible light. Remarkably, porphyrin biosynthesis and light-induced depigmentation are enhanced by starvation, recapitulating a common feature of some porphyrias - decreased nutrient intake precipitates an acute manifestation of the disease. Our results establish planarians as an experimentally tractable animal model for research into the pathophysiology of acute porphyrias, and potentially for the identification of novel pharmacological interventions capable of alleviating porphyrin-mediated photosensitivity or decoupling dieting and fasting from disease pathogenesis.


Molecular photoprotection of human keratinocytes in vitro by the naturally occurring mycosporine-like amino acid palythine.

  • K P Lawrence‎ et al.
  • The British journal of dermatology‎
  • 2018‎

Solar ultraviolet radiation (UVR) induces molecular and genetic changes in the skin, which result in skin cancer, photoageing and photosensitivity disorders. The use of sunscreens is advocated to prevent such photodamage; however, most formulations contain organic and inorganic UVR filters that are nonbiodegradable and can damage fragile marine ecosystems. Mycosporine-like amino acids (MAAs) are natural UVR-absorbing compounds that have evolved in marine species for protection against chronic UVR exposure in shallow-water habitats.


The M5 Cell: A Color-Opponent Intrinsically Photosensitive Retinal Ganglion Cell.

  • Maureen E Stabio‎ et al.
  • Neuron‎
  • 2018‎

Intrinsically photosensitive retinal ganglion cells (ipRGCs) combine direct photosensitivity through melanopsin with synaptically mediated drive from classical photoreceptors through bipolar-cell input. Here, we sought to provide a fuller description of the least understood ipRGC type, the M5 cell, and discovered a distinctive functional characteristic-chromatic opponency (ultraviolet excitatory, green inhibitory). Serial electron microscopic reconstructions revealed that M5 cells receive selective UV-opsin drive from Type 9 cone bipolar cells but also mixed cone signals from bipolar Types 6, 7, and 8. Recordings suggest that both excitation and inhibition are driven by the ON channel and that chromatic opponency results from M-cone-driven surround inhibition mediated by wide-field spiking GABAergic amacrine cells. We show that M5 cells send axons to the dLGN and are thus positioned to provide chromatic signals to visual cortex. These findings underscore that melanopsin's influence extends beyond unconscious reflex functions to encompass cortical vision, perhaps including the perception of color.


Live-cell time-lapse imaging and single-cell tracking of in vitro cultured neural stem cells - Tools for analyzing dynamics of cell cycle, migration, and lineage selection.

  • Katja M Piltti‎ et al.
  • Methods (San Diego, Calif.)‎
  • 2018‎

Neural stem cell (NSC) cultures have been considered technically challenging for time-lapse analysis due to high motility, photosensitivity, and growth at confluent densities. We have tested feasibility of long-term live-cell time-lapse analysis for NSC migration and differentiation studies. Here, we describe a method to study the dynamics of cell cycle, migration, and lineage selection in cultured multipotent mouse or human NSCs using single-cell tracking during a long-term, 7-14 day live-cell time-lapse analysis. We used in-house made PDMS inserts with five microwells on a glass coverslip petri-dish to constrain NSC into the area of acquisition during long-term live-cell imaging. In parallel, we have defined image acquisition settings for single-cell tracking of cell cycle dynamics using Fucci-reporter mouse NSC for 7 days as well as lineage selection and migration using human NSC for 14 days. Overall, we show that adjustments of live-cell analysis settings can extend the time period of single-cell tracking in mouse or human NSC from 24-72 h up to 7-14 days and potentially longer. However, we emphasize that experimental use of repeated fluorescence imaging will require careful consideration of controls during acquisition and analysis.


The treatment landscape in thyroid cancer: a focus on cabozantinib.

  • Steven P Weitzman‎ et al.
  • Cancer management and research‎
  • 2015‎

Although patients with thyroid cancer generally fare well, there is a subset for which this is not necessarily true. Progress in understanding the molecular aberrations in thyroid cancer has led to a change in the management of these cases. Since 2011, four multikinase inhibitors (MKIs) have been approved by the US Food and Drug Administration for thyroid cancer - cabozantinib and vandetanib for medullary thyroid cancer and sorafenib and lenvatinib for differentiated thyroid cancer. This change in the treatment landscape has raised challenges for practitioners who may not be familiar with the use of MKIs or with the treatment and natural history of advanced thyroid cancer in general. This article reviews the epidemiology, molecular drivers, and initial treatment of patients with thyroid cancer and offers practical guidance to assist with the determination of when to appropriately start an MKI. As an example, cabozantinib and its efficacy are discussed in detail. Close monitoring is required for all patients on targeted agents to assess for adverse effects and response to therapy. An approach to managing drug-related adverse events is detailed. Since these drugs are not curative and have not yet proven to prolong overall survival, it is critical to weigh the risks and benefits of treatment at every visit. The potential value of changing to a different agent following failure of an MKI is also addressed.


Lupus band test can be used in combination with anti-chromatin antibodies and complement analysis to predict transition from cutaneous to systemic lupus.

  • Caroline Carlé‎ et al.
  • Clinical immunology (Orlando, Fla.)‎
  • 2022‎

The lupus band test (LBT) is frequently performed for patients with lupus erythematosus (LE) but its capacity to discriminate cutaneous (C)LE from systemic (S)LE is debated, as well as its association with serum antinuclear antibodies (ANA) and complement reduction. Among 158 patients, 56 received retrospectively a diagnosis of CLE, 37 have SLE and 65 other skin disorders. Considering 29 clinical, histopathologic, LBT, and serological parameters: 5 parameters were effective in distinguishing LE from other skin disorders (e.g. skin photosensitivity, LBT positivity, basal vacuolar changes, thickening of the basement membrane, and anti-SSA-60 kDa); and 8 parameters were able to separate SLE from CLE (e.g. arthritis, lupus nephritis, hematological manifestations, Raynaud/sicca manifestations, anti-chromatin, anti-dsDNA, and low levels of C3/4). A positive LBT was further determined to be associated with systemic manifestations when associated with anti-chromatin response and complement reduction in the profile of patients evolving to a systemic form of lupus.


Erythroid-Progenitor-Targeted Gene Therapy Using Bifunctional TFR1 Ligand-Peptides in Human Erythropoietic Protoporphyria.

  • Arienne Mirmiran‎ et al.
  • American journal of human genetics‎
  • 2019‎

Erythropoietic protoporphyria (EPP) is a hereditary disease characterized by a deficiency in ferrochelatase (FECH) activity. FECH activity is responsible for the accumulation of protoporphyrin IX (PPIX). Without etiopathogenic treatment, EPP manifests as severe photosensitivity. 95% of affected individuals present a hypomorphic FECH allele trans to a loss-of-function (LOF) FECH mutation, resulting in a reduction in FECH activity in erythroblasts below a critical threshold. The hypomorphic allele promotes the use of a cryptic acceptor splice site, generating an aberrant FECH mRNA, which is responsible for the reduced level of wild-type FECH mRNA and, ultimately, FECH activity. We have previously identified an antisense oligonucleotide (AON), AON-V1 (V1), that redirects splicing to the physiological acceptor site and reduces the accumulation of PPIX. Here, we developed a specific strategy that uses transferrin receptor 1 (TRF1) as a Trojan horse to deliver V1 to erythroid progenitors. We designed a bifunctional peptide (P1-9R) including a TFR1-targeting peptide coupled to a nine-arginine cell-penetrating peptide (CPP) that facilitates the release of the AON from TFR1 in endosomal vesicles. We demonstrated that the P1-9R/V1 nanocomplex promotes the efficient and prolonged redirection of splicing towards the physiological splice site and subsequent normalization of WT FECH mRNA and protein levels. Finally, the P1-9R/V1 nanocomplex increases WT FECH mRNA production and significantly decreases PPIX accumulation in primary cultures of differentiating erythroid progenitors from an overt EPP-affected individual. P1-9R is a method designed to target erythroid progenitors and represents a potentially powerful tool for the in vivo delivery of therapeutic DNA in many erythroid disorders.


Nabumetone induced photogenotoxicity mechanism mediated by ROS generation under environmental UV radiation in human keratinocytes (HaCaT) cell line.

  • Saba Qureshi‎ et al.
  • Toxicology and applied pharmacology‎
  • 2021‎

Nabumetone (NB) is a non-steroidal anti-inflammatory drug (NSAID), prescribed for managing pain associated with acute/chronic rheumatoid arthritis, osteoarthritis and other musculoskeletal disorders. Though some incidences of photosensitivity have been reported, there is limited information available on its phototoxicity potential. In this study, NB photodegraded in a time-dependant manner (0-4 h) under UVA (1.5 mW/cm2), UVB (0.6 mW/cm2) and natural sunlight as observed through UV-vis spectrophotometer and the results were further confirmed with Ultra High-Performance Liquid Chromatography (UHPLC). Photosensitized NB generated reactive oxygen species (ROS) as observed by lipid peroxidation, suggesting oxidative degradation of lipids in cell membrane, thereby resulting in cell damage. MTT and NRU (neutral red uptake) assays revealed that NB induced phototoxicity in concentration-dependent manner (0.5, 1, 5, 10 μg/ml) under UVA, UVB and sunlight exposure (30 min) in human keratinocytes cell line (HaCaT), with significant phototoxicity at the concentration of 5 μg/ml. Photosensitized NB generated intracellular ROS, disrupted mitochondrial and lysosomal membrane integrity, resulting in cell death. UV-induced genotoxicity by NB was confirmed through micronuclei generation, γ-H2AX induction and cyclobutane pyrimidine dimer formation. This is the first study which showed the phototoxicity and photogenotoxicity potential of NB in HaCaT cell line. We also observed that photosensitized NB upregulated inflammatory markers, such as COX-2 and TNFα. This study proposes that sunlight exposure should be avoided by patients using nabumetone and proper guidance should be provided by clinicians regarding photosensitivity of drugs for better safety and efficacy.


Cell migration is impaired in XPA-deficient cells.

  • Seiji Takeuchi‎ et al.
  • FASEB bioAdvances‎
  • 2023‎

Xeroderma pigmentosum (XP) is a hereditary disorder characterized by photosensitivity, predisposition to skin cancers, and neurological abnormalities including microcephaly and progressive neurodegeneration. A lack of nucleotide excision repair (NER) in patients with XP can cause hypersensitivity to the sun, leading to skin cancer, whereas the etiology of the neuronal symptoms of XP remains ambiguous. There are various neurological disorders that perturb neuronal migration, causing mislocalization and disorganization of the cortical lamination. Here, we investigated the role of the XP group-A (Xpa) gene in directed cell migration. First, we adopted an in utero electroporation method to transduce shRNA vectors into the murine embryonic cerebral cortex for the in vivo knockdown of Xpa. Xpa-knockdown neurons in the embryonic cerebral cortex showed abnormal cell migration, cell cycle exit, and differentiation. The genotype-phenotype relationship between the lack of XPA and cell migration abnormalities was confirmed using both a scratch assay and time-lapse microscopy in XP-A patient-derived fibroblasts. Unlike healthy cells, these cells showed impairment in overall mobility and the direction of motility. Therefore, abnormal cell migration may explain neural tissue abnormalities in patients with XP-A.


Mutations in the TTDN1 gene are associated with a distinct trichothiodystrophy phenotype.

  • Elizabeth R Heller‎ et al.
  • The Journal of investigative dermatology‎
  • 2015‎

Trichothiodystrophy (TTD) is a rare multisystem disorder, characterized by sulfur-deficient hair with alternating dark and light "tiger tail" banding on polarized light microscopy. TTD is caused by mutations in DNA repair/transcription genes XPD, XPB or TTDA, and in TTDN1, a gene of unknown function. Although most of the TTD patients are photosensitive, patients with TTDN1 mutations were reported to be nonphotosensitive. We followed a cohort of 36 TTD patients from 2001 to 2013. We describe five patients from four families with defects in the TTDN1 gene: four had no photosensitivity, and one patient exhibited cutaneous burning. Deep phenotyping of our cohort revealed differences between the patients with and without TTDN1 mutations. Delayed bone age and seizure disorders were overrepresented in the TTDN1 group (P=0.009 and P=0.024, respectively), whereas some characteristic TTD clinical, laboratory, and imaging findings were absent. The three oldest TTDN1 patients displayed autistic behaviors in contrast to the characteristic friendly, socially interactive personality in the other patients. DNA sequencing revealed deletion mutations in TTDN1 ranging in size from a single base pair to over 120 kb. These data identify a distinct phenotype relationship in TTD caused by TTDN1 mutations and suggest a different mechanism of disease.


Evaluation of phototoxicity induced by the anticancer drug rucaparib.

  • Alejandro Mateos-Pujante‎ et al.
  • Scientific reports‎
  • 2022‎

Rucaparib (RCP) is a potent selective inhibitor of both PARP-1 and PARP-2 enzymes that induces synthetic lethality in cancer cells. It is used for the treatment of breast and ovarian tumors harboring deleterious germline or somatic cancer susceptibility genes mutations. Although RCP has an indole chromophore in its structure, it displays a bathochromic shift of the absorption band towards the UVA region of sunlight, thus extending the active fraction of solar light able to produce photosensitivity reactions. In this context, it is highly interesting to study the photo(geno)toxicity disorders associated with this drug, bearing in mind that, for dermatologists it is crucial to understand the toxicity mechanism to improve clinical management. In the present work, RCP has shown to be potentially phototoxic, as observed in the neutral red uptake phototoxicity test. Moreover, this significant phototoxicity is attributed to both proteins and genomic DNA, as revealed in the protein photooxidation and comet assays. The results obtained are highly relevant concerning RCP photosafety and become clinically important in the context of identification of the cutaneous adverse events that can be associated with the targeted therapies. Interestingly, this is the first example of a PARP inhibitor able to induce photosensitized damage to biomolecules.


Multivariate Approaches in Quantitative Structure-Property Relationships Study for the Photostability Assessment of 1,4-Dihydropyridine Derivatives.

  • Martina Chieffallo‎ et al.
  • Pharmaceutics‎
  • 2024‎

1,4-dihydropyridines (1,4-DHPs) are widely recognized as highly effective L-type calcium channel blockers with significant therapeutic benefits in the treatment of cardiovascular disorders. 1,4-DHPs can also target T-type calcium channels, making them promising drug candidates for neurological conditions. When exposed to light, all 1,4-DHPs tend to easily degrade, leading to an oxidation product derived from the aromatization of the dihydropyridine ring. Herein, the elaboration of a quantitative structure-property relationships (QSPR) model was carried out by correlating the light sensitivity of structurally different 1,4-DHPs with theoretical molecular descriptors. Photodegradation experiments were performed by exposing the drugs to a Xenon lamp following the ICH rules. The degradation was monitored by spectrophotometry, and experimental data were elaborated by Multivariate Curve Resolution (MCR) methodologies to assess the kinetic rates. The results were confirmed by the HPLC-DAD method. PaDEL-Descriptor software was used to calculate molecular descriptors and fingerprints related to the chemical structures. Seventeen of the 1875 molecular descriptors were selected and correlated to the photodegradation rate by means of the Ordinary Least Squares (OLS) algorithm. The chemometric model is useful to predict the photosensitivity of other 1,4-DHP derivatives with a very low relative error percentage of 5.03% and represents an effective tool to design new analogs characterized by higher photostability.


Blue and Long-Wave Ultraviolet Light Induce in vitro Neutrophil Extracellular Trap (NET) Formation.

  • Elsa Neubert‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Neutrophil Extracellular Traps (NETs) are produced by neutrophilic granulocytes and consist of decondensed chromatin decorated with antimicrobial peptides. They defend the organism against intruders and are released upon various stimuli including pathogens, mediators of inflammation, or chemical triggers. NET formation is also involved in inflammatory, cardiovascular, malignant diseases, and autoimmune disorders like rheumatoid arthritis, psoriasis, or systemic lupus erythematosus (SLE). In many autoimmune diseases like SLE or dermatomyositis, light of the ultraviolet-visible (UV-VIS) spectrum is well-known to trigger and aggravate disease severity. However, the underlying connection between NET formation, light exposure, and disease exacerbation remains elusive. We studied the effect of UVA (375 nm), blue (470 nm) and green (565 nm) light on NETosis in human neutrophils ex vivo. Our results show a dose- and wavelength-dependent induction of NETosis. Light-induced NETosis depended on the generation of extracellular reactive oxygen species (ROS) induced by riboflavin excitation and its subsequent reaction with tryptophan. The light-induced NETosis required both neutrophil elastase (NE) as well as myeloperoxidase (MPO) activation and induced histone citrullination. These findings suggest that NET formation as a response to light could be the hitherto missing link between elevated susceptibility to NET formation in autoimmune patients and photosensitivity for example in SLE and dermatomyositis patients. This novel connection could provide a clue for a deeper understanding of light-sensitive diseases in general and for the development of new pharmacological strategies to avoid disease exacerbation upon light exposure.


Retinal structure and function in monkeys with fetal alcohol exposure.

  • Joseph Bouskila‎ et al.
  • Experimental eye research‎
  • 2018‎

Exposure to ethanol in utero leads to several brain development disorders including retinal abnormalities whose underlying cellular pathogenesis remains elusive. We recently reported that fetal alcohol exposure (FAE) in vervet monkeys induces anomalies of full-field electroretinogram (ERG) waveforms that suggest premature aging of the retina. The goal of this study is to characterize the anatomo-functional mechanisms underlying the retinal changes observed in fetal alcohol exposed (FAE) monkeys, and age- and sex-matched normals. First, we examined in vivo the fundus of the eyes, measured intraocular pressure (IOP) and assessed cone activity using flicker ERG. Second, we investigated ex vivo, protein expression and anatomical organization of the retina using Western blotting, classical histology and immunohistochemistry. Our results indicated that the fundus of the eyes showed both, increased vascularization (tessellated fundus) and IOP in FAE monkeys. Furthermore, light-adapted flicker responses above 15 Hz were also significantly higher in FAE monkeys. Although there were no obvious changes in the overall anatomy in the FAE retina, Glial Fibrillary Acidic Protein (GFAP, a potent marker of astrocytes) immunoreactivity was increased in the FAE retinal ganglion cell layer indicating a strong astrogliosis. These alterations were present in juvenile (2 years old) monkeys and persist in adults (8 years old). Moreover, using specific cell type markers, no significant modifications in the morphology of the photoreceptors, horizontal cells, bipolar cells, and amacrine cells were observed. Our data indicate that FAE does indeed induce anatomical changes within the retinal ganglion cell layer that are reflected in the increased photosensitivity of the cone photoreceptors.


Cognitive Behavioural Therapy and Light Dark Therapy for Maternal Postpartum Insomnia Symptoms: Protocol of a Parallel-Group Randomised Controlled Efficacy Trial.

  • Sumedha Verma‎ et al.
  • Frontiers in global women's health‎
  • 2020‎

Background: Symptoms of insomnia are common in new mothers and have been associated with a range of negative maternal and child outcomes. Despite this, interventions to improve maternal postpartum sleep remain scarce. Cognitive Behavioural Therapy (CBT) and Light Dark Therapy (LDT) represent two promising interventions for insomnia symptoms and associated daytime consequences such as fatigue. This randomised controlled trial examines whether CBT and LDT improve maternal insomnia symptoms as the primary outcome and maternal sleep disturbance, mood, fatigue, and sleepiness as secondary outcomes. This protocol paper outlines the development, design, and implementation of the trial. Methods: Participants are an Australian community-sample of 90 first-time mothers who are 4-12 months postpartum with self-reported symptoms of insomnia (Insomnia Severity Index scores ≥ 8). Exclusion criteria include current severe sleep/psychiatric disorders, unsettled infant sleep behaviour, sleep-affecting medication use, and photosensitivity. Eligible women are randomised into a CBT (strategies targeting sleep, worries, fatigue, and relaxation), LDT, or a treatment-as-usual control condition. Interventions are therapist-assisted and personalised through two telephone calls and include a series of automated intervention emails delivered over 6 weeks. Primary and secondary outcomes are assessed at four time points: baseline, intervention mid-point, post-intervention, and 1-month post-intervention. Discussion: If found effective, these interventions could represent efficacious, safe, and inexpensive treatments for improving postpartum insomnia and mitigate its negative impact on maternal well-being. Interventions tested are highly scalable and can be integrated into postpartum care and made available to the broader community. ANZCTR trial registration: Accessible at: https://anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12618000842268.


Cerebro-oculo-facio-skeletal syndrome with a nucleotide excision-repair defect and a mutated XPD gene, with prenatal diagnosis in a triplet pregnancy.

  • J M Graham‎ et al.
  • American journal of human genetics‎
  • 2001‎

Cerebro-oculo-facio-skeletal (COFS) syndrome is a recessively inherited rapidly progressive neurologic disorder leading to brain atrophy, with calcifications, cataracts, microcornea, optic atrophy, progressive joint contractures, and growth failure. Cockayne syndrome (CS) is a recessively inherited neurodegenerative disorder characterized by low to normal birth weight, growth failure, brain dysmyelination with calcium deposits, cutaneous photosensitivity, pigmentary retinopathy and/or cataracts, and sensorineural hearing loss. Cultured CS cells are hypersensitive to UV radiation, because of impaired nucleotide-excision repair (NER) of UV-induced damage in actively transcribed DNA, whereas global genome NER is unaffected. The abnormalities in CS are caused by mutated CSA or CSB genes. Another class of patients with CS symptoms have mutations in the XPB, XPD, or XPG genes, which result in UV hypersensitivity as well as defective global NER; such patients may concurrently have clinical features of another NER syndrome, xeroderma pigmentosum (XP). Clinically observed similarities between COFS syndrome and CS have been followed by discoveries of cases of COFS syndrome that are associated with mutations in the XPG and CSB genes. Here we report the first involvement of the XPD gene in a new case of UV-sensitive COFS syndrome, with heterozygous substitutions-a R616W null mutation (previously seen in patients in XP complementation group D) and a unique D681N mutation-demonstrating that a third gene can be involved in COFS syndrome. We propose that COFS syndrome be included within the already known spectrum of NER disorders: XP, CS, and trichothiodystrophy. We predict that future patients with COFS syndrome will be found to have mutations in the CSA or XPB genes, and we document successful use of DNA repair for prenatal diagnosis in triplet and singleton pregnancies at risk for COFS syndrome. This result strongly underlines the need for screening of patients with COFS syndrome, for either UV sensitivity or DNA-repair abnormalities.


Cellular photo(geno)toxicity of gefitinib after biotransformation.

  • Meryem El Ouardi‎ et al.
  • Frontiers in pharmacology‎
  • 2023‎

Gefitinib (GFT) is a selective epidermal growth factor receptor (EGFR) inhibitor clinically used for the treatment of patients with non-small cell lung cancer. Bioactivation by mainly Phase I hepatic metabolism leads to chemically reactive metabolites such as O-Demethyl gefitinib (DMT-GFT), 4-Defluoro-4-hydroxy gefitinib (DF-GFT), and O-Demorpholinopropyl gefitinib (DMOR-GFT), which display an enhanced UV-light absorption. In this context, the aim of the present study is to investigate the capability of gefitinib metabolites to induce photosensitivity disorders and to elucidate the involved mechanisms. According to the neutral red uptake (NRU) phototoxicity test, only DF-GFT metabolite can be considered non-phototoxic to cells with a photoirritation factor (PIF) close to 1. Moreover, DMOR-GFT is markedly more phototoxic than the parent drug (PIF = 48), whereas DMT-GFT is much less phototoxic (PIF = 7). Using the thiobarbituric acid reactive substances (TBARS) method as an indicator of lipid photoperoxidation, only DMOR-GFT has demonstrated the ability to photosensitize this process, resulting in a significant amount of TBARS (similar to ketoprofen, which was used as the positive control). Protein photooxidation monitored by 2,4-dinitrophenylhydrazine (DNPH) derivatization method is mainly mediated by GFT and, to a lesser extent, by DMOR-GFT; in contrast, protein oxidation associated with DMT-GFT is nearly negligible. Interestingly, the damage to cellular DNA as revealed by the comet assay, indicates that DMT-GFT has the highest photogenotoxic potential; moreover, the DNA damage induced by this metabolite is hardly repaired by the cells after a time recovery of 18 h. This could ultimately result in mutagenic and carcinogenic effects. These results could aid oncologists when prescribing TKIs to cancer patients and, thus, establish the conditions of use and recommend photoprotection guidelines.


Self-Reported Visual Complaints in People with Parkinson's Disease: A Systematic Review.

  • Iris van der Lijn‎ et al.
  • Journal of Parkinson's disease‎
  • 2022‎

Scientific research increasingly focuses on visual symptoms of people with Parkinson's disease (PD). However, this mostly involves functional measures, whereas self-reported data are equally important for guiding clinical care.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: