2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Quantitative myocardial perfusion in coronary artery disease: A perfusion mapping study.

  • Kristopher D Knott‎ et al.
  • Journal of magnetic resonance imaging : JMRI‎
  • 2019‎

Cardiac MR stress perfusion remains a qualitative technique in clinical practice due to technical and postprocessing challenges. However, automated inline perfusion mapping now permits myocardial blood flow (MBF, ml/g/min) quantification on-the-fly without user input.


Automated Inline Analysis of Myocardial Perfusion MRI with Deep Learning.

  • Hui Xue‎ et al.
  • Radiology. Artificial intelligence‎
  • 2020‎

To develop a deep neural network-based computational workflow for inline myocardial perfusion analysis that automatically delineates the myocardium, which improves the clinical workflow and offers a "one-click" solution.


Inline perfusion mapping provides insights into the disease mechanism in hypertrophic cardiomyopathy.

  • Claudia Camaioni‎ et al.
  • Heart (British Cardiac Society)‎
  • 2020‎

In patients with hypertrophic cardiomyopathy (HCM), the role of small vessel disease and myocardial perfusion remains incompletely understood and data on absolute myocardial blood flow (MBF, mL/g/min) are scarce. We measured MBF using cardiovascular magnetic resonance fully quantitative perfusion mapping to determine the relationship between perfusion, hypertrophy and late gadolinium enhancement (LGE) in HCM.


Females have higher myocardial perfusion, blood volume and extracellular volume compared to males - an adenosine stress cardiovascular magnetic resonance study.

  • Jannike Nickander‎ et al.
  • Scientific reports‎
  • 2020‎

Knowledge on sex differences in myocardial perfusion, blood volume (MBV), and extracellular volume (ECV) in healthy individuals is scarce and conflicting. Therefore, this was investigated quantitatively by cardiovascular magnetic resonance (CMR). Healthy volunteers (n = 41, 51% female) underwent CMR at 1.5 T. Quantitative MBV [%] and perfusion [ml/min/g] maps were acquired during adenosine stress and at rest following an intravenous contrast bolus (0.05 mmol/kg, gadobutrol). Native T1 maps were acquired before and during adenosine stress, and after contrast (0.2 mmol/kg) at rest and during adenosine stress, rendering rest and stress ECV maps. Compared to males, females had higher perfusion, ECV, and MBV at stress, and perfusion and ECV at rest (p < 0.01 for all). Multivariate linear regression revealed that sex and MBV were associated with perfusion (sex beta -0.31, p = 0.03; MBV beta -0.37, p = 0.01, model R2 = 0.29, p < 0.01) while sex and hematocrit were associated with ECV (sex beta -0.33, p = 0.03; hematocrit beta -0.48, p < 0.01, model R2 = 0.54, p < 0.001). Myocardial perfusion, MBV, and ECV are higher in female healthy volunteers compared to males. Sex is an independent contributor to perfusion and ECV, beyond other physiological factors that differ between the sexes. These findings provide mechanistic insight into sex differences in myocardial physiology.


Stress native T1 and native T2 mapping compared to myocardial perfusion reserve in long-term follow-up of severe Covid-19.

  • Jannike Nickander‎ et al.
  • Scientific reports‎
  • 2023‎

Severe Covid-19 may cause a cascade of cardiovascular complications beyond viral pneumonia. The severe inflammation may affect the microcirculation which can be assessed by cardiovascular magnetic resonance (CMR) imaging using quantitative perfusion mapping and calculation of myocardial perfusion reserve (MPR). Furthermore, native T1 and T2 mapping have previously been shown to identify changes in myocardial perfusion by the change in native T1 and T2 during adenosine stress. However, the relationship between native T1, native T2, ΔT1 and ΔT2 with myocardial perfusion and MPR during long-term follow-up in severe Covid-19 is currently unknown. Therefore, patients with severe Covid-19 (n = 37, median age 57 years, 24% females) underwent 1.5 T CMR median 292 days following discharge. Quantitative myocardial perfusion (ml/min/g), and native T1 and T2 maps were acquired during adenosine stress, and rest, respectively. Both native T1 (R2 = 0.35, p < 0.001) and native T2 (R2 = 0.28, p < 0.001) correlated with myocardial perfusion. However, there was no correlation with ΔT1 or ΔT2 with MPR, respectively (p > 0.05 for both). Native T1 and native T2 correlate with myocardial perfusion during adenosine stress, reflecting the coronary circulation in patients during long-term follow-up of severe Covid-19. Neither ΔT1 nor ΔT2 can be used to assess MPR in patients with severe Covid-19.


Simultaneous 13N-Ammonia and gadolinium first-pass myocardial perfusion with quantitative hybrid PET-MR imaging: a phantom and clinical feasibility study.

  • Muhummad Sohaib Nazir‎ et al.
  • European journal of hybrid imaging‎
  • 2019‎

Positron emission tomography (PET) is the non-invasive reference standard for myocardial blood flow (MBF) quantification. Hybrid PET-MR allows simultaneous PET and cardiac magnetic resonance (CMR) acquisition under identical experimental and physiological conditions. This study aimed to determine feasibility of simultaneous 13N-Ammonia PET and dynamic contrast-enhanced CMR MBF quantification in phantoms and healthy volunteers.


Use of quantitative cardiovascular magnetic resonance myocardial perfusion mapping for characterization of ischemia in patients with left internal mammary coronary artery bypass grafts.

  • Andreas Seraphim‎ et al.
  • Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance‎
  • 2021‎

Quantitative myocardial perfusion mapping using cardiovascular magnetic resonance (CMR) is validated for myocardial blood flow (MBF) estimation in native vessel coronary artery disease (CAD). Following coronary artery bypass graft (CABG) surgery, perfusion defects are often detected in territories supplied by the left internal mammary artery (LIMA) graft, but their interpretation and subsequent clinical management is variable.


The relative contributions of myocardial perfusion, blood volume and extracellular volume to native T1 and native T2 at rest and during adenosine stress in normal physiology.

  • Jannike Nickander‎ et al.
  • Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance‎
  • 2019‎

Both ischemic and non-ischemic heart disease can cause disturbances in the myocardial blood volume (MBV), myocardial perfusion and the myocardial extracellular volume fraction (ECV). Recent studies suggest that native myocardial T1 mapping can detect changes in MBV during adenosine stress without the use of contrast agents. Furthermore, native T2 mapping could also potentially be used to quantify changes in myocardial perfusion and/or MBV. Therefore, the aim of this study was to explore the relative contributions of myocardial perfusion, MBV and ECV to native T1 and native T2 at rest and during adenosine stress in normal physiology.


Association Between Type 2 Diabetes and Changes in Myocardial Structure, Contractile Function, Energetics, and Blood Flow Before and After Aortic Valve Replacement in Patients With Severe Aortic Stenosis.

  • Nicholas Jex‎ et al.
  • Circulation‎
  • 2023‎

Type 2 diabetes (T2D) is associated with an increased risk of left ventricular dysfunction after aortic valve replacement (AVR) in patients with severe aortic stenosis (AS). Persistent impairments in myocardial energetics and myocardial blood flow (MBF) may underpin this observation. Using phosphorus magnetic resonance spectroscopy and cardiovascular magnetic resonance, this study tested the hypothesis that patients with severe AS and T2D (AS-T2D) would have impaired myocardial energetics as reflected by the phosphocreatine to ATP ratio (PCr/ATP) and vasodilator stress MBF compared with patients with AS without T2D (AS-noT2D), and that these differences would persist after AVR.


Fully automated, inline quantification of myocardial blood flow with cardiovascular magnetic resonance: repeatability of measurements in healthy subjects.

  • Louise A E Brown‎ et al.
  • Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance‎
  • 2018‎

Non-invasive assessment of myocardial ischaemia is a cornerstone of the diagnosis of coronary artery disease. Measurement of myocardial blood flow (MBF) using positron emission tomography (PET) is the current reference standard for non-invasive quantification of myocardial ischaemia. Dynamic myocardial perfusion cardiovascular magnetic resonance (CMR) offers an alternative to PET and a recently developed method with automated inline perfusion mapping has shown good correlation of MBF values between CMR and PET. This study assessed the repeatability of myocardial perfusion mapping by CMR in healthy subjects.


A comparison of standard and high dose adenosine protocols in routine vasodilator stress cardiovascular magnetic resonance: dosage affects hyperaemic myocardial blood flow in patients with severe left ventricular systolic impairment.

  • Louise A E Brown‎ et al.
  • Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance‎
  • 2021‎

Adenosine stress perfusion cardiovascular magnetic resonance (CMR) is commonly used in the assessment of patients with suspected ischaemia. Accepted protocols recommend administration of adenosine at a dose of 140 µg/kg/min increased up to 210 µg/kg/min if required. Conventionally, adequate stress has been assessed using change in heart rate, however, recent studies have suggested that these peripheral measurements may not reflect hyperaemia and can be blunted, in particular, in patients with heart failure. This study looked to compare stress myocardial blood flow (MBF) and haemodynamic response with different dosing regimens of adenosine during stress perfusion CMR in patients and healthy controls.


Coexistent Diabetes Is Associated With the Presence of Adverse Phenotypic Features in Patients With Hypertrophic Cardiomyopathy.

  • Nicholas Jex‎ et al.
  • Diabetes care‎
  • 2022‎

Type 2 diabetes mellitus (T2DM) is associated with worsened clinical outcomes in hypertrophic cardiomyopathy (HCM) patients. We sought to investigate whether HCM patients with T2DM comorbidity exhibit adverse cardiac alterations in myocardial energetics, function, perfusion, or tissue characteristics.


Empagliflozin Treatment Is Associated With Improvements in Cardiac Energetics and Function and Reductions in Myocardial Cellular Volume in Patients With Type 2 Diabetes.

  • Sharmaine Thirunavukarasu‎ et al.
  • Diabetes‎
  • 2021‎

Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce the risk of major adverse cardiovascular (CV) events and hospitalization for heart failure (HF) in patients with type 2 diabetes (T2D). Using CV MRI (CMR) and 31P-MRS in a longitudinal cohort study, we aimed to investigate the effects of the selective SGLT2 inhibitor empagliflozin on myocardial energetics and cellular volume, function, and perfusion. Eighteen patients with T2D underwent CMR and 31P-MRS scans before and after 12 weeks' empagliflozin treatment. Plasma N-terminal prohormone B-type natriuretic peptide (NT-proBNP) levels were measured. Ten volunteers with normal glycemic control underwent an identical scan protocol at a single visit. Empagliflozin treatment was associated with significant improvements in phosphocreatine-to-ATP ratio (1.52 to 1.76, P = 0.009). This was accompanied by a 7% absolute increase in the mean left ventricular ejection fraction (P = 0.001), 3% absolute increase in the mean global longitudinal strain (P = 0.01), 8 mL/m2 absolute reduction in the mean myocardial cell volume (P = 0.04), and 61% relative reduction in the mean NT-proBNP (P = 0.05) from baseline measurements. No significant change in myocardial blood flow or diastolic strain was detected. Empagliflozin thus ameliorates the "cardiac energy-deficient" state, regresses adverse myocardial cellular remodeling, and improves cardiac function, offering therapeutic opportunities to prevent or modulate HF in T2D.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: