Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 88 papers

Comparison of biophysical properties of α1β2 and α3β2 GABAA receptors in whole-cell patch-clamp electrophysiological recordings.

  • Emma Rie Olander‎ et al.
  • PloS one‎
  • 2020‎

In the present study we have characterized the biophysical properties of wild-type (WT) α1β2 and α3β2 GABAA receptors and probed the molecular basis for the observed differences. The activation and desensitization behavior and the residual currents of the receptors expressed in HEK293 cells were determined in whole-cell patch clamp recordings. Kinetic parameters of α1β2 and α3β2 activation differed significantly, with α1β2 and α3β2 exhibiting rise times (10-90%) of 24 ± 2 ms and 51 ± 7 ms, respectively. In contrast, the two receptors exhibited largely comparable desensitization behavior with decay currents that could be fitted to exponential functions with two or three components. Most notably, the two receptor compositions displayed different degrees of desentization, with the residual currents of α1β2 and α3β2 constituting 34 ± 2% and 21 ± 2% of the peak current, respectively. The respective contributions of the extracellular domains and the transmembrane/intracellular domains of the α-subunit to these physiological profiles were next assessed in recordings from cells expressing αβ2 receptors comprising chimeric α-subunits. The rise times displayed by α1ECD/α3TMDβ2 and α3ECD/α1TMDβ2 receptors were intermediate to those of WT α1β2 and WT α3β2, and the distribution of the different components of the current decays exhibited by the two chimeric receptors followed the same pattern as the two WT receptors. The residual current exhibited by α1ECD/α3TMDβ2 (23 ± 3%) was similar to that of α3β2 but significantly different from that of α1β2, whereas the residual current displayed by α3ECD/α1TMDβ2 (27 ± 2%) was intermediate to and did not differ significantly from either of the WT receptors. This points to molecular differences in the transmembrane/intracellular domains of the α-subunit as the main determinants of the observed differences in receptor physiology between α1β2 and α3β2 receptors.


Broad-Band Activatable White-Opsin.

  • Subrata Batabyal‎ et al.
  • PloS one‎
  • 2015‎

Currently, the use of optogenetic sensitization of retinal cells combined with activation/inhibition has the potential to be an alternative to retinal implants that would require electrodes inside every single neuron for high visual resolution. However, clinical translation of optogenetic activation for restoration of vision suffers from the drawback that the narrow spectral sensitivity of an opsin requires active stimulation by a blue laser or a light emitting diode with much higher intensities than ambient light. In order to allow an ambient light-based stimulation paradigm, we report the development of a 'white-opsin' that has broad spectral excitability in the visible spectrum. The cells sensitized with white-opsin showed excitability at an order of magnitude higher with white light compared to using only narrow-band light components. Further, cells sensitized with white-opsin produced a photocurrent that was five times higher than Channelrhodopsin-2 under similar photo-excitation conditions. The use of fast white-opsin may allow opsin-sensitized neurons in a degenerated retina to exhibit a higher sensitivity to ambient white light. This property, therefore, significantly lowers the activation threshold in contrast to conventional approaches that use intense narrow-band opsins and light to activate cellular stimulation.


Effect of methamphetamine on the microglial damage: role of potassium channel Kv1.3.

  • Jun Wang‎ et al.
  • PloS one‎
  • 2014‎

Methamphetamine (Meth) abusing represents a major public health problem worldwide. Meth has long been known to induce neurotoxicity. However, the mechanism is still remained poorly understood. Growing evidences indicated that the voltage-gated potassium channels (Kv) were participated in neuronal damage and microglia function. With the whole cell patch clamp, we found that Meth significantly increased the outward K⁺ currents, therefore, we explored whether Kv1.3, one of the major K⁺ channels expressed in microglia, was involved in Meth-induced microglia damage. Our study showed that Meth significantly increased the cell viability in a dose dependent manner, while the Kv blocker, tetraethylamine (TEA), 4-Aminopyridine (4-AP) and Kv1.3 specific antagonist margatoxin (MgTx), prevented against the damage mediated by Meth. Interestingly, treatment of cells with Meth resulted in increasing expression of Kv1.3 rather than Kv1.5, at both mRNA and protein level, which is partially blocked by MgTx. Furthermore, Meth also stimulated a significant increased expression of IL-6 and TNF-α at protein level, which was significantly inhibited by MgTx. Taken together, these results demonstrated that Kv1.3 was involved in Meth-mediated microglial damage, providing the potential target for the development of therapeutic strategies for Meth abuse.


Properties of doublecortin-(DCX)-expressing cells in the piriform cortex compared to the neurogenic dentate gyrus of adult mice.

  • Friederike Klempin‎ et al.
  • PloS one‎
  • 2011‎

The piriform cortex receives input from the olfactory bulb and (via the entorhinal cortex) sends efferents to the hippocampus, thereby connecting the two canonical neurogenic regions of the adult rodent brain. Doublecortin (DCX) is a cytoskeleton-associated protein that is expressed transiently in the course of adult neurogenesis. Interestingly, the adult piriform cortex, which is usually considered non-neurogenic (even though some reports exist that state otherwise), also contains an abundant population of DCX-positive cells. We asked how similar these cells would be to DCX-positive cells in the course of adult hippocampal neurogenesis. Using BAC-generated transgenic mice that express GFP under the DCX promoter, we studied DCX-expression and electrophysiological properties of DCX-positive cells in the mouse piriform cortex in comparison with the dentate gyrus. While one class of cells in the piriform cortex indeed showed features similar to newly generated immature granule neurons, the majority of DCX cells in the piriform cortex was mature and revealed large Na+ currents and multiple action potentials. Furthermore, when proliferative activity was assessed, we found that all DCX-expressing cells in the piriform cortex were strictly postmitotic, suggesting that no DCX-positive "neuroblasts" exist here as they do in the dentate gyrus. We conclude that DCX in the piriform cortex marks a unique population of postmitotic neurons with a subpopulation that retains immature characteristics associated with synaptic plasticity. DCX is thus, per se, no marker of neurogenesis but might be associated more broadly with plasticity.


Opening of astrocytic mitochondrial ATP-sensitive potassium channels upregulates electrical coupling between hippocampal astrocytes in rat brain slices.

  • Jiangping Wang‎ et al.
  • PloS one‎
  • 2013‎

Astrocytes form extensive intercellular networks through gap junctions to support both biochemical and electrical coupling between adjacent cells. ATP-sensitive K(+) (K(ATP)) channels couple cell metabolic state to membrane excitability and are enriched in glial cells. Activation of astrocytic mitochondrial K(ATP) (mitoK(ATP)) channel regulates certain astrocytic functions. However, less is known about its impact on electrical coupling between directly coupled astrocytes ex vivo. By using dual patch clamp recording, we found that activation of mitoK(ATP) channel increased the electrical coupling ratio in brain slices. The electrical coupling ratio started to increase 3 min after exposure to Diazoxide, a mitoK(ATP) channel activator, peaked at 5 min, and maintained its level with little adaptation until the end of the 10-min treatment. Blocking the mitoK(ATP) channel with 5-hydroxydecanoate, inhibited electrical coupling immediately, and by 10-min, the ratio dropped by 71% of the initial level. Activation of mitoK(ATP) channel also decreased the latency time of the transjunctional currents by 50%. The increase in the coupling ratio resulting from the activation of the mitoK(ATP) channel in a single astrocyte was further potentiated by the concurrent inhibiting of the channel on the recipient astrocyte. Furthermore, Meclofenamic acid, a gap-junction inhibitor which completely blocked the tracer coupling, hardly reversed the impact of mitoK(ATP) channel's activation on electrical coupling (by 7%). The level of mitochondrial Connexin43, a gap junctional subunit, significantly increased by 70% in astrocytes after 10-min Diazoxide treatment. Phospho-ERK signals were detected in Connexin43 immunoprecipitates in the Diazoxide-treated astrocytes, but not untreated control samples. Finally, inhibiting ERK could attenuate the effects of Diazoxide on electrical coupling by 61%. These findings demonstrate that activation of astrocytic mitoK(ATP) channel upregulates electrical coupling between hippocampal astrocytes ex vivo. In addition, this effect is mainly via up-regulation of the Connexin43-constituted gap junction coupling by an ERK-dependent mechanism in the mitochondria.


Modulation of T-type Ca2+ channels by Lavender and Rosemary extracts.

  • Chaymae El Alaoui‎ et al.
  • PloS one‎
  • 2017‎

Medicinal plants represent a significant reservoir of unexplored substances for early-stage drug discovery. Of interest, two flowering Mediterranean plants have been used for thousands of years for their beneficial effects on nervous disorders, including anxiety and mood. However, the therapeutic potential of these plants regarding their ability to target ion channels and neuronal excitability remains largely unknown. Towards this goal, we have investigated the ability of Lavender and Rosemary to modulate T-type calcium channels (TTCCs). TTCCs play important roles in neuronal excitability, neuroprotection, sensory processes and sleep. These channels are also involved in epilepsy and pain. Using the whole-cell patch-clamp technique, we have characterized how Lavender and Rosemary extracts, as well as their major active compounds Linalool and Rosmarinic acid, modulate the electrophysiological properties of recombinant TTCCs (CaV3.2) expressed in HEK-293T cells. Both the methanolic and essential oil extracts as well as the active compounds of these plants inhibit Cav3.2 current in a concentration-dependent manner. In addition, these products also induce a negative shift of the steady-state inactivation of CaV3.2 current with no change in the activation properties. Taken together, our findings reveal that TTCCs are a molecular target of the Lavender and Rosemary compounds, suggesting that inhibition of TTCCs could contribute to the anxiolytic and the neuroprotective effects of these plants.


Evaluation of anticonvulsant actions of dibromophenyl enaminones using in vitro and in vivo seizure models.

  • Mohamed G Qaddoumi‎ et al.
  • PloS one‎
  • 2014‎

Epilepsy and other seizure disorders are not adequately managed with currently available drugs. We recently synthesized a series of dibromophenyl enaminones and demonstrated that AK6 and E249 were equipotent to previous analogs but more efficacious in suppressing neuronal excitation. Here we examined the actions of these lead compounds on in vitro and in vivo seizure models. In vitro seizures were induced in the hippocampal slice chemically (zero Mg2+ buffer and picrotoxin) and electrically using patterned high frequency stimulation (HFS) of afferents. In vivo seizures were induced in rats using the 6 Hz and the maximal electroshock models. AK6 (10 µM) and E249 (10 µM) depressed the amplitude of population spikes recorded in area CA1 of the hippocampus by -50.5±4.3% and -40.1±3.1% respectively, with partial recovery after washout. In the zero Mg2+ model, AK6 (10 µM) depressed multiple population spiking (mPS) by -59.3±6.9% and spontaneous bursts (SBs) by -65.9±7.2% and in the picrotoxin-model by -43.3±7.2% and -50.0±8.3%, respectively. Likewise, E249 (10 µM) depressed the zero-Mg2+-induced mPS by -48.8±9.5% and SBs by -55.8±15.5%, and in the picrotoxin model by -37.1±5.5% and -56.5±11.4%, respectively. They both suppressed post-HFS induced afterdischarges and SBs. AK6 and E249 dose-dependently protected rats in maximal electroshock and 6 Hz models of in vivo seizures after 30 min pretreatment. Their level of protection in both models was similar to that obtained with phenytoin Finally, while AK6 had no effect on locomotion in rats, phenytoin significantly decreased locomotion. AK6 and E249, suppressed in vitro and in vivo seizures to a similar extent. Their in vivo activities are comparable with but not superior to phenytoin. The most efficacious, AK6 produced no locomotor suppression while phenytoin did. Thus, AK6 and E249 may be excellent candidates for further investigation as potential agents for the treatment of epilepsy syndromes with possibly less CNS side effects.


Divalent cation and chloride ion sites of chicken acid sensing ion channel 1a elucidated by x-ray crystallography.

  • Nate Yoder‎ et al.
  • PloS one‎
  • 2018‎

Acid sensing ion channels (ASICs) are proton-gated ion channels that are members of the degenerin/epithelial sodium channel superfamily and are expressed throughout central and peripheral nervous systems. ASICs have been implicated in multiple physiological processes and are subject to numerous forms of endogenous and exogenous regulation that include modulation by Ca2+ and Cl- ions. However, the mapping of ion binding sites as well as a structure-based understanding of the mechanisms underlying ionic modulation of ASICs have remained elusive. Here we present ion binding sites of chicken ASIC1a in resting and desensitized states at high and low pH, respectively, determined by anomalous diffraction x-ray crystallography. The acidic pocket serves as a nexus for divalent cation binding at both low and high pH, while we observe divalent cation binding within the central vestibule on the resting channel at high pH only. Moreover, neutralization of residues positioned to coordinate divalent cations via individual and combined Glu to Gln substitutions reduced, but did not extinguish, modulation of proton-dependent gating by Ca2+. Additionally, we demonstrate that anion binding at the canonical thumb domain site is state-dependent and present a previously undetected anion site at the mouth of the extracellular fenestrations on the resting channel. Our results map anion and cation sites on ASICs across multiple functional states, informing possible mechanisms of modulation and providing a blueprint for the design of therapeutics targeting ASICs.


Cellular and network contributions to excitability of layer 5 neocortical pyramidal neurons in the rat.

  • Dan Bar-Yehuda‎ et al.
  • PloS one‎
  • 2007‎

There is a considerable gap between investigating the dynamics of single neurons and the computational aspects of neural networks. A growing number of studies have attempted to overcome this gap using the excitation in brain slices elicited by various chemical manipulations of the bath solution. However, there has been no quantitative study on the effects of these manipulations on the cellular and network factors controlling excitability. Using the whole-cell configuration of the patch-clamp technique we recorded the membrane potential from the soma of layer 5 pyramidal neurons in acute brain slices from the somatosensory cortex of young rats at 22 degrees C and 35 degrees C. Using blockers of synaptic transmission, we show distinct changes in cellular properties following modification of the ionic composition of the artificial cerebrospinal fluid (ACSF). Thus both cellular and network changes may contribute to the observed effects of slice excitation solutions on the physiology of single neurons. Furthermore, our data suggest that the difference in the ionic composition of current standard ACSF from that of CSF measured in vivo cause ACSF to depress network activity in acute brain slices. This may affect outcomes of experiments investigating biophysical and physiological properties of neurons in such preparations. Our results strongly advocate the necessity of redesigning experiments routinely carried out in the quiescent acute brain slice preparation.


Enhanced Archaerhodopsin Fluorescent Protein Voltage Indicators.

  • Yiyang Gong‎ et al.
  • PloS one‎
  • 2013‎

A longstanding goal in neuroscience has been to develop techniques for imaging the voltage dynamics of genetically defined subsets of neurons. Optical sensors of transmembrane voltage would enhance studies of neural activity in contexts ranging from individual neurons cultured in vitro to neuronal populations in awake-behaving animals. Recent progress has identified Archaerhodopsin (Arch) based sensors as a promising, genetically encoded class of fluorescent voltage indicators that can report single action potentials. Wild-type Arch exhibits sub-millisecond fluorescence responses to trans-membrane voltage, but its light-activated proton pump also responds to the imaging illumination. An Arch mutant (Arch-D95N) exhibits no photocurrent, but has a slower, ~40 ms response to voltage transients. Here we present Arch-derived voltage sensors with trafficking signals that enhance their localization to the neural membrane. We also describe Arch mutant sensors (Arch-EEN and -EEQ) that exhibit faster kinetics and greater fluorescence dynamic range than Arch-D95N, and no photocurrent at the illumination intensities normally used for imaging. We benchmarked these voltage sensors regarding their spike detection fidelity by using a signal detection theoretic framework that takes into account the experimentally measured photon shot noise and optical waveforms for single action potentials. This analysis revealed that by combining the sequence mutations and enhanced trafficking sequences, the new sensors improved the fidelity of spike detection by nearly three-fold in comparison to Arch-D95N.


Metabolic syndrome remodels electrical activity of the sinoatrial node and produces arrhythmias in rats.

  • Alondra Albarado-Ibañez‎ et al.
  • PloS one‎
  • 2013‎

In the last ten years, the incidences of metabolic syndrome and supraventricular arrhythmias have greatly increased. The metabolic syndrome is a cluster of alterations, which include obesity, hypertension, hypertriglyceridemia, glucose intolerance and insulin resistance, that increase the risk of developing, among others, atrial and nodal arrhythmias. The aim of this study is to demonstrate that metabolic syndrome induces electrical remodeling of the sinus node and produces arrhythmias. We induced metabolic syndrome in 2-month-old male Wistar rats by administering 20% sucrose in the drinking water. Eight weeks later, the rats were anesthetized and the electrocardiogram was recorded, revealing the presence of arrhythmias only in treated rats. Using conventional microelectrode and voltage clamp techniques, we analyzed the electrical activity of the sinoatrial node. We observed that in the sinoatrial node of "metabolic syndrome rats", compared to controls, the spontaneous firing of all cells decreased, while the slope of the diastolic depolarization increased only in latent pacemaker cells. Accordingly, the pacemaker currents If and Ist increased. Furthermore, histological analysis showed a large amount of fat surrounding nodal cardiomyocytes and a rise in the sympathetic innervation. Finally, Poincaré plot denoted irregularity in the R-R and P-P ECG intervals, in agreement with the variability of nodal firing potential recorded in metabolic syndrome rats. We conclude that metabolic syndrome produces a dysfunction SA node by disrupting normal architecture and the electrical activity, which could explain the onset of arrhythmias in rats.


Isovaline does not activate GABA(B) receptor-coupled potassium currents in GABA(B) expressing AtT-20 cells and cultured rat hippocampal neurons.

  • Kimberley A Pitman‎ et al.
  • PloS one‎
  • 2015‎

Isovaline is a non-proteinogenic amino acid that has analgesic properties. R-isovaline is a proposed agonist of the γ-aminobutyric acid type B (GABA(B)) receptor in the thalamus and peripheral tissue. Interestingly, the responses to R-isovaline differ from those of the canonical GABA(B) receptor agonist R-baclofen, warranting further investigation. Using whole cell recording techniques we explored isovaline actions on GABA(B) receptors coupled to rectifying K+ channels in cells of recombinant and native receptor preparations. In AtT-20 cells transfected with GABA(B) receptor subunits, bath application of the GABA(B) receptor agonists, GABA (1 μM) and R-baclofen (5 μM) produced inwardly rectifying currents that reversed approximately at the calculated reversal potential for K+ R- isovaline (50 μM to 1 mM) and S-isovaline (500 μM) did not evoke a current. R-isovaline applied either extracellularly (250 μM) or intracellularly (10 μM) did not alter responses to GABA at 1 μM. Co-administration of R-isovaline (250 μM) with a low concentration (10 nM) of GABA did not result in a response. In cultured rat hippocampal neurons that natively express GABA(B) receptors, R-baclofen (5 μM) induced GABA(B) receptor-dependent inward currents. Under the same conditions R-isovaline (1 or 50 μM) did not evoke a current or significantly alter R-baclofen-induced effects. Therefore, R-isovaline does not interact with recombinant or native GABA(B) receptors to open K+ channels in these preparations.


Ca(2+) permeable AMPA receptor induced long-term potentiation requires PI3/MAP kinases but not Ca/CaM-dependent kinase II.

  • Suhail Asrar‎ et al.
  • PloS one‎
  • 2009‎

Ca(2+) influx via GluR2-lacking Ca(2+)-permeable AMPA glutamate receptors (CP-AMPARs) can trigger changes in synaptic efficacy in both interneurons and principle neurons, but the underlying mechanisms remain unknown. We took advantage of genetically altered mice with no or reduced GluR2, thus allowing the expression of synaptic CP-AMPARs, to investigate the molecular signaling process during CP-AMPAR-induced synaptic plasticity at CA1 synapses in the hippocampus. Utilizing electrophysiological techniques, we demonstrated that these receptors were capable of inducing numerous forms of long-term potentiation (referred to as CP-AMPAR dependent LTP) through a number of different induction protocols, including high-frequency stimulation (HFS) and theta-burst stimulation (TBS). This included a previously undemonstrated form of protein-synthesis dependent late-LTP (L-LTP) at CA1 synapses that is NMDA-receptor independent. This form of plasticity was completely blocked by the selective CP-AMPAR inhibitor IEM-1460, and found to be dependent on postsynaptic Ca(2+) ions through calcium chelator (BAPTA) studies. Surprisingly, Ca/CaM-dependent kinase II (CaMKII), the key protein kinase that is indispensable for NMDA-receptor dependent LTP at CA1 synapses appeared to be not required for the induction of CP-AMPAR dependent LTP due to the lack of effect of two separate pharmacological inhibitors (KN-62 and staurosporine) on this form of potentiation. Both KN-62 and staurosporine strongly inhibited NMDA-receptor dependent LTP in control studies. In contrast, inhibitors for PI3-kinase (LY294002 and wortmannin) or the MAPK cascade (PD98059 and U0126) significantly attenuated this CP-AMPAR-dependent LTP. Similarly, postsynaptic infusion of tetanus toxin (TeTx) light chain, an inhibitor of exocytosis, also had a significant inhibitory effect on this form of LTP. These results suggest that distinct synaptic signaling underlies GluR2-lacking CP-AMPAR-dependent LTP, and reinforces the recent notions that CP-AMPARs are important facilitators of synaptic plasticity in the brain.


KCa3.1-Dependent Hyperpolarization Enhances Intracellular Ca2+ Signaling Induced by fMLF in Differentiated U937 Cells.

  • Antonello Penna‎ et al.
  • PloS one‎
  • 2015‎

Formylated peptides are chemotactic agents generated by pathogens. The most relevant peptide is fMLF (formyl-Met-Leu-Phe) which participates in several immune functions, such as chemotaxis, phagocytosis, cytokine release and generation of reactive oxygen species. In macrophages fMLF-dependent responses are dependent on both, an increase in intracellular calcium concentration and on a hyperpolarization of the membrane potential. However, the molecular entity underlying this hyperpolarization remains unknown and it is not clear whether changes in membrane potential are linked to the increase in intracellular Ca2+. In this study, differentiated U937 cells, as a macrophage-like cell model, was used to characterize the fMLF response using electrophysiological and Ca2+ imaging techniques. We demonstrate by means of pharmacological and molecular biology tools that fMLF induces a Ca2+-dependent hyperpolarization via activation of the K+ channel KCa3.1 and thus, enhancing fMLF-induced intracellular Ca2+ increase through an amplification of the driving force for Ca2+ entry. Consequently, enhanced Ca2+ influx would in turn lengthen the hyperpolarization, operating as a positive feedback mechanism for fMLF-induced Ca2+ signaling.


HIV-1gp120 induces neuronal apoptosis through enhancement of 4-aminopyridine-senstive outward K+ currents.

  • Lina Chen‎ et al.
  • PloS one‎
  • 2011‎

Human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) usually occurs late in the course of HIV-1 infection and the mechanisms underlying HAD pathogenesis are not well understood. Accumulating evidence indicates that neuronal voltage-gated potassium (Kv) channels play an important role in memory processes and acquired neuronal channelopathies in HAD. To examine whether Kv channels are involved in HIV-1-associated neuronal injury, we studied the effects of HIV-1 glycoprotein 120 (gp120) on outward K+ currents in rat cortical neuronal cultures using whole-cell patch techniques. Exposure of cortical neurons to gp120 produced a dose-dependent enhancement of A-type transient outward K+ currents (IA). The gp120-induced increase of IA was attenuated by T140, a specific antagonist for chemokine receptor CXCR4, suggesting gp120 enhancement of neuronal IA via CXCR4. Pretreatment of neuronal cultures with a protein kinase C (PKC) inhibitor, GF109203X, inhibited the gp120-induced increase of IA. Biological significance of gp120 enhancement of IA was demonstrated by experimental results showing that gp120-induced neuronal apoptosis, as detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and caspase-3 staining, was attenuated by either an IA blocker 4-aminopyridine or a specific CXCR4 antagonist T140. Taken together, these results suggest that gp120 may induce caspase-3 dependent neuronal apoptosis by enhancing IA via CXCR4-PKC signaling.


Novel mouse model reveals distinct activity-dependent and -independent contributions to synapse development.

  • Pier Giorgio Pacifici‎ et al.
  • PloS one‎
  • 2011‎

The balanced action of both pre- and postsynaptic organizers regulates the formation of neuromuscular junctions (NMJ). The precise mechanisms that control the regional specialization of acetylcholine receptor (AChR) aggregation, guide ingrowing axons and contribute to correct synaptic patterning are unknown. Synaptic activity is of central importance and to understand synaptogenesis, it is necessary to distinguish between activity-dependent and activity-independent processes. By engineering a mutated fetal AChR subunit, we used homologous recombination to develop a mouse line that expresses AChR with massively reduced open probability during embryonic development. Through histological and immunochemical methods as well as electrophysiological techniques, we observed that endplate anatomy and distribution are severely aberrant and innervation patterns are completely disrupted. Nonetheless, in the absence of activity AChRs form postsynaptic specializations attracting motor axons and permitting generation of multiple nerve/muscle contacts on individual fibers. This process is not restricted to a specialized central zone of the diaphragm and proceeds throughout embryonic development. Phenotypes can be attributed to separate activity-dependent and -independent pathways. The correct patterning of synaptic connections, prevention of multiple contacts and control of nerve growth require AChR-mediated activity. In contrast, myotube survival and acetylcholine-mediated dispersal of AChRs are maintained even in the absence of AChR-mediated activity. Because mouse models in which acetylcholine is entirely absent do not display similar effects, we conclude that acetylcholine binding to the AChR initiates activity-dependent and activity-independent pathways whereby the AChR modulates formation of the NMJ.


Autoantibodies against the β3-adrenoceptor protect from cardiac dysfunction in a rat model of pressure overload.

  • Jin Wang‎ et al.
  • PloS one‎
  • 2013‎

β3-Adrenoceptors (β3-ARs) mediate a negative inotropic effect in human ventricular cardiomyocytes, which is opposite to that of β1- and β2-ARs. It has been previously demonstrated that autoantibodies against the β1/β2-AR exist in the sera of some patients with heart failure (HF) and these autoantibodies display agonist-like effects. Our aim in this study was to observe whether autoantibodies against the β3-AR (β3-AR Abs) exist in the sera of patients with HF and to assess the effects of β3-AR Abs on rat model of pressure overload cardiomyopthy. In the present study, the level of β3-AR Abs in the sera of HF patients was screened by ELISA. β3-AR Abs from HF patients were administrated to male adult rats with abdominal aortic banding (AAB), and the cardiac function was measured by echocardiographic examination and hemodynamic studies. The biological effects of this autoantibody on cardiomyocytes were evaluated using a motion-edge detection system, intracellular calcium transient assay, and patch clamp techniques. Compared to healthy subjects, the frequency of occurrence and titer of β3-AR Abs in the sera of HF patients were greatly increased, and β3-AR Abs could prevent LV dilation and improve the cardiac function of rats with AAB. β3-AR Abs exhibited negative chronotropic and inotropic effects and were accompanied by a decreased intracellular Ca(2+) transient and membrane L-type Ca(2+) current in cardiomyocytes. Our results demonstrated the existence of β3-AR Abs in the sera of patients with HF and found that this autoantibody could alleviate the cardiac dysfunction induced by pressure-overload in AAB rats.


Task-dependent interaction between parietal and contralateral primary motor cortex during explicit versus implicit motor imagery.

  • Florent Lebon‎ et al.
  • PloS one‎
  • 2012‎

Both mental rotation (MR) and motor imagery (MI) involve an internalization of movement within motor and parietal cortex. Transcranial magnetic stimulation (TMS) techniques allow for a task-dependent investigation of the interhemispheric interaction between these areas. We used image-guided dual-coil TMS to investigate interactions between right inferior parietal lobe (rIPL) and left primary motor cortex (M1) in 11 healthy participants. They performed MI (right index-thumb pinching in time with a 1 Hz metronome) or hand MR tasks, while motor evoked potentials (MEPs) were recorded from right first dorsal interosseous. At rest, rIPL conditioning 6 ms prior to M1 stimulation facilitated MEPs in all participants, whereas this facilitation was abolished during MR. While rIPL conditioning 12 ms prior to M1 stimulation had no effect on MEPs at rest, it suppressed corticomotor excitability during MI. These results support the idea that rIPL forms part of a distinct inhibitory network that may prevent unwanted movement during imagery tasks.


RyR2 modulates a Ca2+-activated K+ current in mouse cardiac myocytes.

  • Yong-Hui Mu‎ et al.
  • PloS one‎
  • 2014‎

In cardiomyocytes, Ca2+ entry through voltage-dependent Ca2+ channels (VDCCs) binds to and activates RyR2 channels, resulting in subsequent Ca2+ release from the sarcoplasmic reticulum (SR) and cardiac contraction. Previous research has documented the molecular coupling of small-conductance Ca2+-activated K+ channels (SK channels) to VDCCs in mouse cardiac muscle. Little is known regarding the role of RyRs-sensitive Ca2+ release in the SK channels in cardiac muscle. In this study, using whole-cell patch clamp techniques, we observed that a Ca2+-activated K+ current (IK,Ca) recorded from isolated adult C57B/L mouse atrial myocytes was significantly decreased by ryanodine, an inhibitor of ryanodine receptor type 2 (RyR2), or by the co-application of ryanodine and thapsigargin, an inhibitor of the sarcoplasmic reticulum calcium ATPase (SERCA) (p<0.05, p<0.01, respectively). The activation of RyR2 by caffeine increased the IK,Ca in the cardiac cells (p<0.05, p<0.01, respectively). We further analyzed the effect of RyR2 knockdown on IK,Ca and Ca2+ in isolated adult mouse cardiomyocytes using a whole-cell patch clamp technique and confocal imaging. RyR2 knockdown in mouse atrial cells transduced with lentivirus-mediated small hairpin interference RNA (shRNA) exhibited a significant decrease in IK,Ca (p<0.05) and [Ca2+]i fluorescence intensity (p<0.01). An immunoprecipitated complex of SK2 and RyR2 was identified in native cardiac tissue by co-immunoprecipitation assays. Our findings indicate that RyR2-mediated Ca2+ release is responsible for the activation and modulation of SK channels in cardiac myocytes.


A Novel SCN5A Mutation Associated with Drug Induced Brugada Type ECG.

  • Isik Turker‎ et al.
  • PloS one‎
  • 2016‎

Class IC antiarrhythmic agents may induce acquired forms of Brugada Syndrome. We have identified a novel mutation in SCN5A, the gene that encodes the α-subunit of the human cardiac sodium channel (hNav1.5), in a patient who exhibited Brugada- type ECG changes during pharmacotherapy of atrial arrhythmias.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: