Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 121 papers

Automatic deep learning-driven label-free image-guided patch clamp system.

  • Krisztian Koos‎ et al.
  • Nature communications‎
  • 2021‎

Patch clamp recording of neurons is a labor-intensive and time-consuming procedure. Here, we demonstrate a tool that fully automatically performs electrophysiological recordings in label-free tissue slices. The automation covers the detection of cells in label-free images, calibration of the micropipette movement, approach to the cell with the pipette, formation of the whole-cell configuration, and recording. The cell detection is based on deep learning. The model is trained on a new image database of neurons in unlabeled brain tissue slices. The pipette tip detection and approaching phase use image analysis techniques for precise movements. High-quality measurements are performed on hundreds of human and rodent neurons. We also demonstrate that further molecular and anatomical analysis can be performed on the recorded cells. The software has a diary module that automatically logs patch clamp events. Our tool can multiply the number of daily measurements to help brain research.


Errors in the measurement of voltage-activated ion channels in cell-attached patch-clamp recordings.

  • Stephen R Williams‎ et al.
  • Nature communications‎
  • 2011‎

Patch-clamp recording techniques have revolutionized understanding of the function and sub-cellular location of ion channels in excitable cells. The cell-attached patch-clamp configuration represents the method of choice to describe the endogenous properties of voltage-activated ion channels in the axonal, somatic and dendritic membrane of neurons, without disturbance of the intracellular milieu. Here, we directly examine the errors associated with cell-attached patch-clamp measurement of ensemble ion channel activity. We find for a number of classes of voltage-activated channels, recorded from the soma and dendrites of neurons in acute brain-slices and isolated cells, that the amplitude and kinetics of ensemble ion channel activity recorded in cell-attached patches is significantly distorted by transmembrane voltage changes generated by the flow of current through the activated ion channels. We outline simple error-correction procedures that allow a more accurate description of the density and properties of voltage-activated channels to be incorporated into computational models of neurons.


Ca2+-dependent regulation of sodium channels NaV1.4 and NaV1.5 is controlled by the post-IQ motif.

  • Jesse B Yoder‎ et al.
  • Nature communications‎
  • 2019‎

Skeletal muscle voltage-gated Na+ channel (NaV1.4) activity is subject to calmodulin (CaM) mediated Ca2+-dependent inactivation; no such inactivation is observed in the cardiac Na+ channel (NaV1.5). Taken together, the crystal structures of the NaV1.4 C-terminal domain relevant complexes and thermodynamic binding data presented here provide a rationale for this isoform difference. A Ca2+-dependent CaM N-lobe binding site previously identified in NaV1.5 is not present in NaV1.4 allowing the N-lobe to signal other regions of the NaV1.4 channel. Consistent with this mechanism, removing this binding site in NaV1.5 unveils robust Ca2+-dependent inactivation in the previously insensitive isoform. These findings suggest that Ca2+-dependent inactivation is effected by CaM's N-lobe binding outside the NaV C-terminal while CaM's C-lobe remains bound to the NaV C-terminal. As the N-lobe binding motif of NaV1.5 is a mutational hotspot for inherited arrhythmias, the contributions of mutation-induced changes in CDI to arrhythmia generation is an intriguing possibility.


Modulatory mechanisms of TARP γ8-selective AMPA receptor therapeutics.

  • Danyang Zhang‎ et al.
  • Nature communications‎
  • 2023‎

AMPA glutamate receptors (AMPARs) mediate excitatory neurotransmission throughout the brain. Their signalling is uniquely diversified by brain region-specific auxiliary subunits, providing an opportunity for the development of selective therapeutics. AMPARs associated with TARP γ8 are enriched in the hippocampus, and are targets of emerging anti-epileptic drugs. To understand their therapeutic activity, we determined cryo-EM structures of the GluA1/2-γ8 receptor associated with three potent, chemically diverse ligands. We find that despite sharing a lipid-exposed and water-accessible binding pocket, drug action is differentially affected by binding-site mutants. Together with patch-clamp recordings and MD simulations we also demonstrate that ligand-triggered reorganisation of the AMPAR-TARP interface contributes to modulation. Unexpectedly, one ligand (JNJ-61432059) acts bifunctionally, negatively affecting GluA1 but exerting positive modulatory action on GluA2-containing AMPARs, in a TARP stoichiometry-dependent manner. These results further illuminate the action of TARPs, demonstrate the sensitive balance between positive and negative modulatory action, and provide a mechanistic platform for development of both positive and negative selective AMPAR modulators.


A microfabricated nerve-on-a-chip platform for rapid assessment of neural conduction in explanted peripheral nerve fibers.

  • Sandra Gribi‎ et al.
  • Nature communications‎
  • 2018‎

Peripheral nerves are anisotropic and heterogeneous neural tissues. Their complex physiology restricts realistic in vitro models, and high resolution and selective probing of axonal activity. Here, we present a nerve-on-a-chip platform that enables rapid extracellular recording and axonal tracking of action potentials collected from tens of myelinated fibers. The platform consists of microfabricated stimulation and recording microchannel electrode arrays. First, we identify conduction velocities of action potentials traveling through the microchannel and propose a robust data-sorting algorithm using velocity selective recording. We optimize channel geometry and electrode spacing to enhance the algorithm reliability. Second, we demonstrate selective heat-induced neuro-inhibition of peripheral nerve activity upon local illumination of a conjugated polymer (P3HT) blended with a fullerene derivative (PCBM) coated on the floor of the microchannel. We demonstrate the nerve-on-a-chip platform is a versatile tool to optimize the design of implantable peripheral nerve interfaces and test selective neuromodulation techniques ex vivo.


Cryo-EM structures of the plant anion channel SLAC1 from Arabidopsis thaliana suggest a combined activation model.

  • Yeongmok Lee‎ et al.
  • Nature communications‎
  • 2023‎

The anion channel SLAC1 functions as a crucial effector in the ABA signaling, leading to stomata closure. SLAC1 is activated by phosphorylation in its intracellular domains. Both a binding-activation model and an inhibition-release model for activation have been proposed based on only the closed structures of SLAC1, rendering the structure-based activation mechanism controversial. Here we report cryo-EM structures of Arabidopsis SLAC1 WT and its phosphomimetic mutants in open and closed states. Comparison of the open structure with the closed ones reveals the structural basis for opening of the conductance pore. Multiple phosphorylation of an intracellular domain (ICD) causes dissociation of ICD from the transmembrane domain. A conserved, positively-charged sequence motif in the intracellular loop 2 (ICL2) seems to be capable of sensing of the negatively charged phosphorylated ICD. Interactions between ICL2 and ICD drive drastic conformational changes, thereby widening the pore. From our results we propose that SLAC1 operates by a mechanism combining the binding-activation and inhibition-release models.


Heterogeneous repolarization creates ventricular tachycardia circuits in healed myocardial infarction scar.

  • Kamilla Kelemen‎ et al.
  • Nature communications‎
  • 2022‎

Arrhythmias originating in scarred ventricular myocardium are a major cause of death, but the underlying mechanism allowing these rhythms to exist remains unknown. This gap in knowledge critically limits identification of at-risk patients and treatment once arrhythmias become manifest. Here we show that potassium voltage-gated channel subfamily E regulatory subunits 3 and 4 (KCNE3, KCNE4) are uniquely upregulated at arrhythmia sites within scarred myocardium. Ventricular arrhythmias occur in areas with a distinctive cardiomyocyte repolarization pattern, where myocyte tracts with short repolarization times connect to myocytes tracts with long repolarization times. We found this unique pattern of repolarization heterogeneity only in ventricular arrhythmia circuits. In contrast, conduction abnormalities were ubiquitous within scar. These repolarization heterogeneities are consistent with known functional effects of KCNE3 and KCNE4 on the slow delayed-rectifier potassium current. We observed repolarization heterogeneity using conventional cardiac electrophysiologic techniques that could potentially translate to identification of at-risk patients. The neutralization of the repolarization heterogeneities could represent a potential strategy for the elimination of ventricular arrhythmia circuits.


High-resolution label-free 3D mapping of extracellular pH of single living cells.

  • Yanjun Zhang‎ et al.
  • Nature communications‎
  • 2019‎

Dynamic mapping of extracellular pH (pHe) at the single-cell level is critical for understanding the role of H+ in cellular and subcellular processes, with particular importance in cancer. While several pHe sensing techniques have been developed, accessing this information at the single-cell level requires improvement in sensitivity, spatial and temporal resolution. We report on a zwitterionic label-free pH nanoprobe that addresses these long-standing challenges. The probe has a sensitivity > 0.01 units, 2 ms response time, and 50 nm spatial resolution. The platform was integrated into a double-barrel nanoprobe combining pH sensing with feedback-controlled distance dependance via Scanning Ion Conductance Microscopy. This allows for the simultaneous 3D topographical imaging and pHe monitoring of living cancer cells. These classes of nanoprobes were used for real-time high spatiotemporal resolution pHe mapping at the subcellular level and revealed tumour heterogeneity of the peri-cellular environments of melanoma and breast cancer cells.


Complex DNA knots detected with a nanopore sensor.

  • Rajesh Kumar Sharma‎ et al.
  • Nature communications‎
  • 2019‎

Equilibrium knots are common in biological polymers-their prevalence, size distribution, structure, and dynamics have been extensively studied, with implications to fundamental biological processes and DNA sequencing technologies. Nanopore microscopy is a high-throughput single-molecule technique capable of detecting the shape of biopolymers, including DNA knots. Here we demonstrate nanopore sensors that map the equilibrium structure of DNA knots, without spurious knot tightening and sliding. We show the occurrence of both tight and loose knots, reconciling previous contradictory results from different experimental techniques. We evidence the occurrence of two quantitatively different modes of knot translocation through the nanopores, involving very different tension forces. With large statistics, we explore the complex knots and, for the first time, reveal the existence of rare composite knots. We use parametrized complexity, in concert with simulations, to test the theoretical assumptions of the models, further asserting the relevance of nanopores in future investigation of knots.


Afferent specific role of NMDA receptors for the circuit integration of hippocampal neurogliaform cells.

  • R Chittajallu‎ et al.
  • Nature communications‎
  • 2017‎

Appropriate integration of GABAergic interneurons into nascent cortical circuits is critical for ensuring normal information processing within the brain. Network and cognitive deficits associated with neurological disorders, such as schizophrenia, that result from NMDA receptor-hypofunction have been mainly attributed to dysfunction of parvalbumin-expressing interneurons that paradoxically express low levels of synaptic NMDA receptors. Here, we reveal that throughout postnatal development, thalamic, and entorhinal cortical inputs onto hippocampal neurogliaform cells are characterized by a large NMDA receptor-mediated component. This NMDA receptor-signaling is prerequisite for developmental programs ultimately responsible for the appropriate long-range AMPAR-mediated recruitment of neurogliaform cells. In contrast, AMPAR-mediated input at local Schaffer-collateral synapses on neurogliaform cells remains normal following NMDA receptor-ablation. These afferent specific deficits potentially impact neurogliaform cell mediated inhibition within the hippocampus and our findings reveal circuit loci implicating this relatively understudied interneuron subtype in the etiology of neurodevelopmental disorders characterized by NMDA receptor-hypofunction.Proper brain function depends on the correct assembly of excitatory and inhibitory neurons into neural circuits. Here the authors show that during early postnatal development in mice, NMDAR signaling via activity of long-range synaptic inputs onto neurogliaform cells is required for their appropriate integration into the hippocampal circuitry.


A high affinity switch for cAMP in the HCN pacemaker channels.

  • Alessandro Porro‎ et al.
  • Nature communications‎
  • 2024‎

Binding of cAMP to Hyperpolarization activated cyclic nucleotide gated (HCN) channels facilitates pore opening. It is unclear why the isolated cyclic nucleotide binding domain (CNBD) displays in vitro lower affinity for cAMP than the full-length channel in patch experiments. Here we show that HCN are endowed with an affinity switch for cAMP. Alpha helices D and E, downstream of the cyclic nucleotide binding domain (CNBD), bind to and stabilize the holo CNBD in a high affinity state. These helices increase by 30-fold cAMP efficacy and affinity measured in patch clamp and ITC, respectively. We further show that helices D and E regulate affinity by interacting with helix C of the CNBD, similarly to the regulatory protein TRIP8b. Our results uncover an intramolecular mechanism whereby changes in binding affinity, rather than changes in cAMP concentration, can modulate HCN channels, adding another layer to the complex regulation of their activity.


Anterior cingulate cortex and its input to the basolateral amygdala control innate fear response.

  • Jinho Jhang‎ et al.
  • Nature communications‎
  • 2018‎

Prefrontal brain areas are implicated in the control of fear behavior. However, how prefrontal circuits control fear response to innate threat is poorly understood. Here, we show that the anterior cingulate cortex (ACC) and its input to the basolateral nucleus of amygdala (BLA) contribute to innate fear response to a predator odor in mice. Optogenetic inactivation of the ACC enhances freezing response to fox urine without affecting conditioned freezing. Conversely, ACC stimulation robustly inhibits both innate and conditioned freezing. Circuit tracing and slice patch recordings demonstrate a monosynaptic glutamatergic connectivity of ACC-BLA but no or very sparse ACC input to the central amygdala. Finally, our optogenetic manipulations of the ACC-BLA projection suggest its inhibitory control of innate freezing response to predator odors. Together, our results reveal the role of the ACC and its projection to BLA in innate fear response to olfactory threat stimulus.


Ventral tegmental area glutamate neurons co-release GABA and promote positive reinforcement.

  • Ji Hoon Yoo‎ et al.
  • Nature communications‎
  • 2016‎

In addition to dopamine neurons, the ventral tegmental area (VTA) contains GABA-, glutamate- and co-releasing neurons, and recent reports suggest a complex role for the glutamate neurons in behavioural reinforcement. We report that optogenetic stimulation of VTA glutamate neurons or terminals serves as a positive reinforcer on operant behavioural assays. Mice display marked preference for brief over sustained VTA glutamate neuron stimulation resulting in behavioural responses that are notably distinct from dopamine neuron stimulation and resistant to dopamine receptor antagonists. Whole-cell recordings reveal EPSCs following stimulation of VTA glutamate terminals in the nucleus accumbens or local VTA collaterals; but reveal both excitatory and monosynaptic inhibitory currents in the ventral pallidum and lateral habenula, though the net effects on postsynaptic firing in each region are consistent with the observed rewarding behavioural effects. These data indicate that VTA glutamate neurons co-release GABA in a projection-target-dependent manner and that their transient activation drives positive reinforcement.


The structure of tyrosine-10 favors ionic conductance of Alzheimer's disease-associated full-length amyloid-β channels.

  • Abhijith G Karkisaval‎ et al.
  • Nature communications‎
  • 2024‎

Amyloid β (Aβ) ion channels destabilize cellular ionic homeostasis, which contributes to neurotoxicity in Alzheimer's disease. The relative roles of various Aβ isoforms are poorly understood. We use bilayer electrophysiology, AFM imaging, circular dichroism, FTIR and fluorescence spectroscopy to characterize channel activities of four most prevalent Aβ peptides, Aβ1-42, Aβ1-40, and their pyroglutamylated forms (AβpE3-42, AβpE3-40) and correlate them with the peptides' structural features. Solvent-induced fluorescence splitting of tyrosine-10 is discovered and used to assess the sequestration from the solvent and membrane insertion. Aβ1-42 effectively embeds in lipid membranes, contains large fraction of β-sheet in a β-barrel-like structure, forms multi-subunit pores in membranes, and displays well-defined ion channel features. In contrast, the other peptides are partially solvent-exposed, contain minimal β-sheet structure, form less-ordered assemblies, and produce irregular ionic currents. These findings illuminate the structural basis of Aβ neurotoxicity through membrane permeabilization and may help develop therapies that target Aβ-membrane interactions.


Ephrin-B3 coordinates timed axon targeting and amygdala spinogenesis for innate fear behaviour.

  • Xiao-Na Zhu‎ et al.
  • Nature communications‎
  • 2016‎

Innate emotion response to environmental stimuli is a fundamental brain function that is controlled by specific neural circuits. Dysfunction of early emotional circuits may lead to neurodevelopmental disorders such as autism and schizophrenia. However, how the functional circuits are formed to prime initial emotional behaviours remain elusive. We reveal here using gene-targeted mutations an essential role for ephrin-B3 ligand-like activity in the development of innate fear in the neonatal brain. We further demonstrate that ephrin-B3 controls axon targeting and coordinates spinogenesis and neuronal activity within the amygdala. The morphological and behavioural abnormalities in ephrin-B3 mutant mice are rescued by conditional knock-in of wild-type ephrin-B3 during the critical period when axon targeting and fear responses are initiated. Our results thus define a key axonal molecule that participates in the wiring of amygdala circuits and helps bring about fear emotion during the important adolescence period.


Cannabinoid non-cannabidiol site modulation of TRPV2 structure and function.

  • Liying Zhang‎ et al.
  • Nature communications‎
  • 2022‎

TRPV2 is a ligand-operated temperature sensor with poorly defined pharmacology. Here, we combine calcium imaging and patch-clamp electrophysiology with cryo-electron microscopy (cryo-EM) to explore how TRPV2 activity is modulated by the phytocannabinoid Δ9-tetrahydrocannabiorcol (C16) and by probenecid. C16 and probenecid act in concert to stimulate TRPV2 responses including histamine release from rat and human mast cells. Each ligand causes distinct conformational changes in TRPV2 as revealed by cryo-EM. Although the binding for probenecid remains elusive, C16 associates within the vanilloid pocket. As such, the C16 binding location is distinct from that of cannabidiol, partially overlapping with the binding site of the TRPV2 inhibitor piperlongumine. Taken together, we discover a new cannabinoid binding site in TRPV2 that is under the influence of allosteric control by probenecid. This molecular insight into ligand modulation enhances our understanding of TRPV2 in normal and pathophysiology.


Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D1 receptors.

  • Yan-Jia Luo‎ et al.
  • Nature communications‎
  • 2018‎

Nucleus accumbens (NAc) is involved in behaviors that depend on heightened wakefulness, but its impact on arousal remains unclear. Here, we demonstrate that NAc dopamine D1 receptor (D1R)-expressing neurons are essential for behavioral arousal. Using in vivo fiber photometry in mice, we find arousal-dependent increases in population activity of NAc D1R neurons. Optogenetic activation of NAc D1R neurons induces immediate transitions from non-rapid eye movement sleep to wakefulness, and chemogenetic stimulation prolongs arousal, with decreased food intake. Patch-clamp, tracing, immunohistochemistry, and electron microscopy reveal that NAc D1R neurons project to the midbrain and lateral hypothalamus, and might disinhibit midbrain dopamine neurons and lateral hypothalamus orexin neurons. Photoactivation of terminals in the midbrain and lateral hypothalamus is sufficient to induce wakefulness. Silencing of NAc D1R neurons suppresses arousal, with increased nest-building behaviors. Collectively, our data indicate that NAc D1R neuron circuits are essential for the induction and maintenance of wakefulness.


KCNQ channel openers reverse depressive symptoms via an active resilience mechanism.

  • Allyson K Friedman‎ et al.
  • Nature communications‎
  • 2016‎

Less than half of patients suffering from major depressive disorder, a leading cause of disability worldwide, achieve remission with current antidepressants, making it imperative to develop more effective treatment. A new therapeutic direction is emerging from the increased understanding of natural resilience as an active stress-coping process. It is known that potassium (K(+)) channels in the ventral tegmental area (VTA) are an active mediator of resilience. However, no druggable targets have been identified to potentiate active resilience mechanisms. In the chronic social defeat stress model of depression, we report that KCNQ-type K(+) channel openers, including FDA-approved drug retigabine (ezogabine), show antidepressant efficacy. We demonstrate that overexpression of KCNQ channels in the VTA dopaminergic neurons and either local infusion or systemic administration of retigabine normalized neuronal hyperactivity and depressive behaviours. These findings identify KCNQ as a target for conceptually novel antidepressants that function through the potentiation of active resilience mechanisms.


Heterodimerization of Munc13 C2A domain with RIM regulates synaptic vesicle docking and priming.

  • Marcial Camacho‎ et al.
  • Nature communications‎
  • 2017‎

The presynaptic active zone protein Munc13 is essential for neurotransmitter release, playing key roles in vesicle docking and priming. Mechanistically, it is thought that the C2A domain of Munc13 inhibits the priming function by homodimerization, and that RIM disrupts the autoinhibitory homodimerization forming monomeric priming-competent Munc13. However, it is unclear whether the C2A domain mediates other Munc13 functions in addition to this inactivation-activation switch. Here, we utilize mutations that modulate the homodimerization and heterodimerization states to define additional roles of the Munc13 C2A domain. Using electron microscopy and electrophysiology in hippocampal cultures, we show that the C2A domain is critical for additional steps of vesicular release, including vesicle docking. Optimal vesicle docking and priming is only possible when Munc13 heterodimerizes with RIM via its C2A domain. Beyond being a switching module, our data suggest that the Munc13-RIM heterodimer is an active component of the vesicle docking, priming and release complex.


Arrestin-biased AT1R agonism induces acute catecholamine secretion through TRPC3 coupling.

  • Chun-Hua Liu‎ et al.
  • Nature communications‎
  • 2017‎

Acute hormone secretion triggered by G protein-coupled receptor (GPCR) activation underlies many fundamental physiological processes. GPCR signalling is negatively regulated by β-arrestins, adaptor molecules that also activate different intracellular signalling pathways. Here we reveal that TRV120027, a β-arrestin-1-biased agonist of the angiotensin II receptor type 1 (AT1R), stimulates acute catecholamine secretion through coupling with the transient receptor potential cation channel subfamily C 3 (TRPC3). We show that TRV120027 promotes the recruitment of TRPC3 or phosphoinositide-specific phospholipase C (PLCγ) to the AT1R-β-arrestin-1 signalling complex. Replacing the C-terminal region of β-arrestin-1 with its counterpart on β-arrestin-2 or using a specific TAT-P1 peptide to block the interaction between β-arrestin-1 and PLCγ abolishes TRV120027-induced TRPC3 activation. Taken together, our results show that the GPCR-arrestin complex initiates non-desensitized signalling at the plasma membrane by coupling with ion channels. This fast communication pathway might be a common mechanism of several cellular processes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: