Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Effects of his-tags on physical properties of parvalbumins.

  • Alisa A Vologzhannikova‎ et al.
  • Cell calcium‎
  • 2019‎

A comparative study of His-tagged and non-tagged rat β-parvalbumin (rWT β-PA), calcium binding protein with the EF-hand calcium binding domains, has been carried out. The attachment of His-tag increases α-helical content and decreases β-sheets and β-turns content of the metal free form (apo-state) of β-PA. In contrast to this, the attachment of His-tag decreases α-helical content by more than 10% and increases contents of β-sheets and β-turns of the Ca2+-loaded state. According to the dynamic light scattering analysis, apo-state of His-tagged rat β-PA seems to be less compact compared with the apo-state of non-tagged rat β-PA. Surprisingly, the attachment of His-tag practically does not change mean hydrodynamic radius of Ca2+-loaded rat β-PA. The attachment of His-tag shifts thermal denaturation peaks of both apo- and Ca2+-loaded states of rat β-PA towards higher temperatures by 3-4 °C and slightly decreases its Ca2+ affinity. These results should be taken into consideration in the use of His-tagged parvalbumins.


In search for globally disordered apo-parvalbumins: Case of parvalbumin β-1 from coho salmon.

  • Alisa A Vologzhannikova‎ et al.
  • Cell calcium‎
  • 2017‎

Parvalbumin (PA) is a classical EF-hand calcium-binding protein of muscle, neuronal, and other tissues, and a major fish allergen. Although certain apo-PAs lack tertiary structure, functional implications of that feature and its structural prerequisites remain unclear. In a search for unstable PAs, we probed conformational stability of parvalbumin β-1 from coho salmon (csPA), a cold water fish species, using circular dichroism, scanning calorimetry, hydrophobic probe fluorescence, limited proteolysis, chemical crosslinking and dynamic light scattering techniques. Apo-csPA is shown to be mainly monomeric protein with markedly disorganized secondary structure and lack of rigid tertiary structure. Examination of per-residue propensity for intrinsic disorder in the PA groups with either folded or unfolded apo-form using the average PONDR® VSL2P profiles revealed that the N-terminal region that includes α-helix A, AB-loop and N-terminal half of α-helix B is predicted to be less ordered in PAs with disordered apo-state. Application of the structural criteria developed for discrimination of disordered PAs indicate that the latter comprise about 16-19% of all PAs. We show that structural instability of apo-β-PA serves as a hallmark of elevated calcium affinity of the protein. Therefore, the successful predictions of unstable apo-PAs might facilitate search for PAs with maximal calcium affinity and possibly serving as calcium sensors.


On the relationship between the conserved 'black' and 'gray' structural clusters and intrinsic disorder in parvalbumins.

  • Eugenia I Deryusheva‎ et al.
  • International journal of biological macromolecules‎
  • 2018‎

Recently we found two highly conserved structural motifs in the members of the EF-hand protein family, which provide a supporting scaffold for their Ca2+ binding loops. Each structural motif is formed by a cluster of three amino acids. These clusters were called 'black' cluster (cluster I) and 'gray' cluster (cluster II). In the present work, we studied the relationship between the location of the 'black' and 'gray' structural clusters in parvalbumins and the location of the amino acid sequence regions with a tendency for intrinsic disorder. This analysis revealed that in parvalbumins, the residues in the vicinity of the conserved structural clusters constitute parts of the conserved motifs enriched in the disorder-promoting residues. Therefore, the clusters found in parvalbumins are characterized not only by the presence of conserved amino acid residues, but also by the conserved distribution of the intrinsic disorder predisposition within their sequences, suggesting the presence of conserved structural dynamics in the apo-forms of parvalbumins, where the black cluster appears to have greater mobility than the gray cluster.


Analyzing the structural and functional roles of residues from the 'black' and 'gray' clusters of human S100P protein.

  • Maria E Permyakova‎ et al.
  • Cell calcium‎
  • 2019‎

Two highly conserved structural motifs observed in members of the EF-hand family of calcium binding proteins. The motifs provide a supporting scaffold for the Ca2+ binding loops and contribute to the hydrophobic core of the EF-hand domain. Each structural motif represents a cluster of three amino acids called cluster I ('black' cluster) and cluster II ('grey' cluster). Cluster I is more conserved and mostly incorporates aromatic amino acids. In contrast, cluster II is noticeably less conserved and includes a mix of aromatic, hydrophobic, and polar amino acids of different sizes. In the human calcium binding S100 P protein, these 'black' and 'gray' clusters include residues F15, F71, and F74 and L33, L58, and K30, respectively. To evaluate the effects of these clusters on structure and functionality of human S100 P, we have performed Ala scanning. The resulting mutants were studied by a multiparametric approach that included circular dichroism, scanning calorimetry, dynamic light scattering, chemical crosslinking, and fluorescent probes. Spectrofluorimetric Ca2+-titration of wild type S100 P showed that S100 P dimer has 1-2 strong calcium binding sites (K1 = 4 × 106 M-1) and two cooperative low affinity (K2 = 4 × 104 M-1) binding sites. Similarly, the S100 P mutants possess two types of calcium binding sites. This analysis revealed that the alanine substitutions in the clusters I and II caused comparable changes in the S100 P functional properties. However, analysis of heat- or GuHCl-induced unfolding of these proteins showed that the alanine substitutions in the cluster I caused notably more pronounced decrease in the protein stability compared to the changes caused by alanine substitutions in the cluster II. Opposite to literature data, the F15 A substitution did not cause the S100 P dimer dissociation, indicating that F15 is not crucial for dimer stability. Overall, similar to parvalbumins, the S100 P cluster I is more important for protein conformational stability than the cluster II.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: