2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 258 papers

Adaptations in Evoked Pain Sensitivity and Conditioned Pain Modulation after Development of Chronic Neck Pain.

  • Bahar Shahidi‎ et al.
  • BioMed research international‎
  • 2017‎

Numerous studies demonstrate elevated pain sensitivity and impaired conditioned pain modulation (CPM) in patients with chronic musculoskeletal pain compared to healthy individuals; however, the time course of changes in pain sensitivity and CPM after the development of a chronic pain condition is unclear. Secondary analysis of data from a prospective investigation examined changes in evoked pain sensitivity and CPM before and after development of chronic neck pain (CNP). 171 healthy office workers participated in a baseline assessment, followed by monthly online questionnaires to identify those who developed CNP over the subsequent year. These individuals (N = 17) and a cohort of participants (N = 10) who remained pain-free during the follow-up period returned for a 12-month follow-up assessment of mechanical and thermal pain sensitivity and CPM. Pain sensitivity measures did not differ between groups at baseline; however, cold pain threshold decreased in the CNP group at follow-up (p < 0.05). CPM was lower at baseline in the CNP group compared to those who reported no neck pain (p < 0.02) and remained unchanged one year later. These findings indicate that CPM is reduced in healthy individuals prior to the development of chronic neck pain and the subsequent reduction of thresholds for cold but not pressure pain.


Pain Management through Neurocognitive Therapeutic Exercises in Hypermobile Ehlers-Danlos Syndrome Patients with Chronic Low Back Pain.

  • Claudia Celletti‎ et al.
  • BioMed research international‎
  • 2021‎

The hypermobile type of Ehlers-Danlos syndrome (hEDS) is likely the most common hereditary disorder of connective tissue mainly characterized by joint hypermobility. Patients with hEDS suffer joint pain, in particular low back pain, commonly resistant to drug therapy. The aim of this research was to evaluate a neurocognitive rehabilitation approach based not only on the motion and function recovery but also on the pain management.


D-aspartate modulates nociceptive-specific neuron activity and pain threshold in inflammatory and neuropathic pain condition in mice.

  • Serena Boccella‎ et al.
  • BioMed research international‎
  • 2015‎

D-Aspartate (D-Asp) is a free D-amino acid found in the mammalian brain with a temporal-dependent concentration based on the postnatal expression of its metabolizing enzyme D-aspartate oxidase (DDO). D-Asp acts as an agonist on NMDA receptors (NMDARs). Accordingly, high levels of D-Asp in knockout mice for Ddo gene (Ddo (-/-)) or in mice treated with D-Asp increase NMDAR-dependent processes. We have here evaluated in Ddo (-/-) mice the effect of high levels of free D-Asp on the long-term plastic changes along the nociceptive pathway occurring in chronic and acute pain condition. We found that Ddo (-/-) mice show an increased evoked activity of the nociceptive specific (NS) neurons of the dorsal horn of the spinal cord (L4-L6) and a significant decrease of mechanical and thermal thresholds, as compared to control mice. Moreover, Ddo gene deletion exacerbated the nocifensive responses in the formalin test and slightly reduced pain thresholds in neuropathic mice up to 7 days after chronic constriction injury. These findings suggest that the NMDAR agonist, D-Asp, may play a role in the regulation of NS neuron electrophysiological activity and behavioral responses in physiological and pathological pain conditions.


Is the experience of thermal pain genetics dependent?

  • Emilia Horjales-Araujo‎ et al.
  • BioMed research international‎
  • 2015‎

It is suggested that genetic variations explain a significant portion of the variability in pain perception; therefore, increased understanding of pain-related genetic influences may identify new targets for therapies and treatments. The relative contribution of the different genes to the variance in clinical and experimental pain responses remains unknown. It is suggested that the genetic contributions to pain perception vary across pain modalities. For example, it has been suggested that more than 60% of the variance in cold pressor responses can be explained by genetic factors; in comparison, only 26% of the variance in heat pain responses is explained by these variations. Thus, the selection of pain model might markedly influence the magnitude of the association between the pain phenotype and genetic variability. Thermal pain sensation is complex with multiple molecular and cellular mechanisms operating alone and in combination within the peripheral and central nervous system. It is thus highly probable that the thermal pain experience is affected by genetic variants in one or more of the pathways involved in the thermal pain signaling. This review aims to present and discuss some of the genetic variations that have previously been associated with different experimental thermal pain models.


The Ehrlich tumor induces pain-like behavior in mice: a novel model of cancer pain for pathophysiological studies and pharmacological screening.

  • Cassia Calixto-Campos‎ et al.
  • BioMed research international‎
  • 2013‎

The Ehrlich tumor is a mammary adenocarcinoma of mice that can be developed in solid and ascitic forms depending on its administration in tissues or cavities, respectively. The present study investigates whether the subcutaneous plantar administration of the Ehrlich tumor cells induces pain-like behavior and initial pharmacological susceptibility characteristics. The Ehrlich tumor cells (1 × 10(4)-10(7) cells) induced dose-dependent mechanical hyperalgesia (electronic version of the von Frey filaments), paw edema/tumor growth (caliper), and flinches compared with the saline group between days 2 and 12. There was no difference between doses of cells regarding thermal hyperalgesia in the hot-plate test. Indomethacin (a cyclooxygenase inhibitor) and amitriptyline hydrochloride (a tricyclic antidepressant) treatments did not affect flinches or thermal and mechanical hyperalgesia. On the other hand, morphine (an opioid) inhibited the flinch behavior and the thermal and mechanical hyperalgesia. These effects of morphine on pain-like behavior were prevented by naloxone (an opioid receptor antagonist) treatment. None of the treatments affected paw edema/tumor growth. The results showed that, in addition to tumor growth, administration of the Ehrlich tumor cells may represent a novel model for the study of cancer pain, specially the pain that is susceptible to treatment with opioids, but not to cyclooxygenase inhibitor or to tricyclic antidepressant.


Bioinformatic Analysis of Neuroimmune Mechanism of Neuropathic Pain.

  • Hao Yu‎ et al.
  • BioMed research international‎
  • 2020‎

Neuropathic pain (NP) is a devastating complication following nerve injury, and it can be alleviated by regulating neuroimmune direction. We aimed to explore the neuroimmune mechanism and identify some new diagnostic or therapeutic targets for NP treatment via bioinformatic analysis.


Alterations in the anandamide metabolism in the development of neuropathic pain.

  • Natalia Malek‎ et al.
  • BioMed research international‎
  • 2014‎

Endocannabinoids (EC), particularly anandamide (AEA), released constitutively in pain pathways might be accountable for the inhibitory effect on nociceptors. Pathogenesis of neuropathic pain may reflect complex remodeling of the dorsal root ganglia (DRGs) and spinal cord EC system. Multiple pathways involved both in the biosynthesis and degradation of AEA have been suggested. We investigated the local synthesis and degradation features of AEA in DRGs and spinal cord during the development and maintenance of pain in a model of chronic constriction injury (CCI). All AEA synthesis and degradation enzymes are present on the mRNA level in DRGs and lumbar spinal cord of intact as well as CCI-treated animals. Deregulation of EC system components was consistent with development of pain phenotype at days 3, 7, and 14 after CCI. The expression levels of enzymes involved in AEA degradation was significantly upregulated ipsilateral in DRGs and spinal cord at different time points. Expression of enzymes of the alternative, sPLA2-dependent and PLC-dependent, AEA synthesis pathways was elevated in both of the analyzed structures at all time points. Our data have shown an alteration of alternative AEA synthesis and degradation pathways, which might contribute to the variation of AEA levels and neuropathic pain development.


Minocycline enhances the effectiveness of nociceptin/orphanin FQ during neuropathic pain.

  • Katarzyna Popiolek-Barczyk‎ et al.
  • BioMed research international‎
  • 2014‎

Nociceptin/orphanin FQ (N/OFQ) antinociception, which is mediated selectively by the N/OFQ peptide receptor (NOP), was demonstrated in pain models. In this study, we determine the role of activated microglia on the analgesic effects of N/OFQ in a rat model of neuropathic pain induced by chronic constriction injury (CCI) to the sciatic nerve. Repeated 7-day administration of minocycline (30 mg/kg i.p.), a drug that affects microglial activation, significantly reduced pain in CCI-exposed rats and it potentiates the analgesic effects of administered N/OFQ (2.5-5 μg i.t.). Minocycline also downregulates the nerve injury-induced upregulation of NOP protein in the dorsal lumbar spinal cord. Our in vitro study showed that minocycline reduced NOP mRNA, but not protein, level in rat primary microglial cell cultures. In [(35)S]GTPγS binding assays we have shown that minocycline increases the spinal N/OFQ-stimulated NOP signaling. We suggest that the modulation of the N/OFQ system by minocycline is due to the potentiation of its neuronal antinociceptive activity and weakening of the microglial cell activation. This effect is beneficial for pain relief, and these results suggest new targets for the development of drugs that are effective against neuropathic pain.


Pain Analysis in Patients with Pancreatic Carcinoma: Irreversible Electroporation versus Cryoablation.

  • Jiannan Li‎ et al.
  • BioMed research international‎
  • 2016‎

The aim of this article is to evaluate and compare the postprocedure pain in patients with pancreatic carcinoma treated with irreversible electroporation (IRE) and cryoablation (CRYO). We compared 22 patients with 22 lesions in pancreas treated with IRE and 26 patients with 27 lesions treated with cryosurgery. All the patients in the two groups were under celiac plexus block (CPB) treatment to alleviate the postprocedure pain. A numerical rating scale (VAS) consisting of 11-point scales and the 24 h total hydromorphone use were recorded for the analysis of the pain level in the patients who underwent these two technologies separately. Other parameters, such as the complications and the ECOG performance status, were also noted. Statistical analysis was performed by Fisher's exact test, the Chi-square test, and Student's t-test. All the pancreatic carcinoma patients in our study were reported to have postprocedure pain in the two groups. But there was no significant difference in the mean pain score (4.95 (IRE) versus 4.85 (CRYO); P = 0.52) and 24 h total hydromorphone use (3.89 mg (IRE) versus 3.97 mg (CRYO); P = 0.30). IRE is comparable to cryotherapy in the amount of pain that patients with pancreatic carcinoma experience.


Contribution of Infrapatellar Fat Pad and Synovial Membrane to Knee Osteoarthritis Pain.

  • Elisa Belluzzi‎ et al.
  • BioMed research international‎
  • 2019‎

Osteoarthritis (OA) is the most common form of joint disease and a major cause of pain and disability in the adult population. Interestingly, there are patients with symptomatic OA displaying pain, while patients with asymptomatic OA that do not experience pain but show radiographic signs of joint damage. Pain is a complex experience integrating sensory, affective, and cognitive processes related to several peripheral and central nociceptive factors besides inflammation. During the last years, the role of infrapatellar fat pad (IFP), other than the synovial membrane, has been investigated as a potential source of pain in OA. Interestingly, new findings suggest that IFP and synovial membrane might act as a functional unit in OA pathogenesis and pain. The present review discuss the role of IFP and synovial membrane in the development of OA, with a particular focus on pain onset and the possible involved mediators that may play a role in OA pathology and pain mechanisms. Inflammation of IFP and synovial membrane may drive peripheral and central sensitization in KOA. Since sensitization is associated with pain severity in knee OA and may potentially contribute to the transition from acute to chronic, persistent pain in knee OA, preventing sensitization would be a potentially effective and novel means of preventing worsening of pain in knee OA.


Antihyperalgesic Effect of Hesperidin Improves with Diosmin in Experimental Neuropathic Pain.

  • Azucena I Carballo-Villalobos‎ et al.
  • BioMed research international‎
  • 2016‎

Neuropathic pain is caused by a primary lesion, dysfunction, or transitory perturbation in the peripheral or central nervous system. In this study, we investigated the hesperidin antihyperalgesic effects alone or combined with diosmin in a model of neuropathic pain to corroborate a possible synergistic antinociceptive activity. Mechanical and thermal hyperalgesia were assessed in the aesthesiometer and plantar tests, respectively, after chronic constriction injury (CCI) model in rats receiving hesperidin (HS, 5 doses from 10 to 1000 mg/kg) alone or combined with diosmin (DS, 10 and 100 mg/kg) in comparison to gabapentin (31.6 mg/kg). UHPLC-MS analysis of cerebral samples was used to recognize the central concentrations of these flavonoids. Participation of different receptors was also investigated in the presence of haloperidol, bicuculline, and naloxone antagonists. Acute hesperidin administration significantly decreased mechanical and thermal hyperalgesia in CCI rats. Antihyperalgesic response of hesperidin, improved by a combination with diosmin (DS10/HS100) in both stimuli, was blockaded by haloperidol, bicuculline, and naloxone, but not WAY100635, antagonists. Both flavonoids were detected in brain samples. In conclusion, hesperidin alone and combined with diosmin produces antihyperalgesic response in the CCI model in rats. Antihyperalgesic effect of DS10/HS100 combination involves central activity partially modulated by D2, GABAA, and opioids, but not by 5-HT1A, receptors.


Sanguinarine Attenuates Neuropathic Pain in a Rat Model of Chronic Constriction Injury.

  • Ping Li‎ et al.
  • BioMed research international‎
  • 2021‎

There is still no effective treatment of neuropathic pain. Sanguinarine is a natural plant medicine with anti-inflammatory effects, but its effect on neuropathic pain remains unclear. This study was aimed at investigating the potential of sanguinarine to attenuate neuropathic pain.


Hydrogen-Rich Saline Activated Autophagy via HIF-1α Pathways in Neuropathic Pain Model.

  • Huixing Wang‎ et al.
  • BioMed research international‎
  • 2018‎

Neuropathic pain is a chronic and intractable pain, with very few effective analgesics. It involves an impaired cell autophagy process. Hydrogen-rich saline (HRS) reportedly reduces allodynia and hyperalgesia in a neuropathic pain model; however, it is unknown whether these effects involve autophagy induction.


Mechanism of Catechol-O-methyltransferase Regulating Orofacial Pain Induced by Tooth Movement.

  • Yonglong Zhou‎ et al.
  • BioMed research international‎
  • 2021‎

To explore the mechanism of catechol-O-methyltransferase (COMT) in tooth movement pain.


Nerve regenerative effects of GABA-B ligands in a model of neuropathic pain.

  • Valerio Magnaghi‎ et al.
  • BioMed research international‎
  • 2014‎

Neuropathic pain arises as a direct consequence of a lesion or disease affecting the peripheral somatosensory system. It may be associated with allodynia and increased pain sensitivity. Few studies correlated neuropathic pain with nerve morphology and myelin proteins expression. Our aim was to test if neuropathic pain is related to nerve degeneration, speculating whether the modulation of peripheral GABA-B receptors may promote nerve regeneration and decrease neuropathic pain. We used the partial sciatic ligation- (PSL-) induced neuropathic model. The biochemical, morphological, and behavioural outcomes of sciatic nerve were analysed following GABA-B ligands treatments. Simultaneous 7-days coadministration of baclofen (10 mg/kg) and CGP56433 (3 mg/kg) alters tactile hypersensitivity. Concomitantly, specific changes of peripheral nerve morphology, nerve structure, and myelin proteins (P0 and PMP22) expression were observed. Nerve macrophage recruitment decreased and step coordination was improved. The PSL-induced changes in nociception correlate with altered nerve morphology and myelin protein expression. Peripheral synergic effects, via GABA-B receptor activation, promote nerve regeneration and likely ameliorate neuropathic pain.


Potential Pharmacokinetic Drug-Drug Interactions between Cannabinoids and Drugs Used for Chronic Pain.

  • Marta Vázquez‎ et al.
  • BioMed research international‎
  • 2020‎

Choosing an appropriate treatment for chronic pain remains problematic, and despite the available medication for its treatment, still, many patients complain about pain and appeal to the use of cannabis derivatives for pain control. However, few data have been provided to clinicians about the pharmacokinetic drug-drug interactions of cannabinoids with other concomitant administered medications. Therefore, the aim of this brief review is to assess the interactions between cannabinoids and pain medication through drug transporters (ATP-binding cassette superfamily members) and/or metabolizing enzymes (cytochromes P450 and glucuronyl transferases).


NGF Expression and Elevation in Hip Osteoarthritis Patients with Pain and Central Sensitization.

  • Yoshihisa Ohashi‎ et al.
  • BioMed research international‎
  • 2021‎

Osteoarthritis (OA) is a chronic degenerative musculoskeletal disease that causes articular cartilage degeneration and chronic pain. Research into OA animal models suggests that elevated NGF levels in the synovium contribute to pain and central sensitization (CS). However, it is unclear whether synovial NGF contributes to CS in patients with OA. We investigated the association between synovial NGF expression and clinical assessments of pain and CS in hip OA (hOA) patients. We also aimed to identify which cells in the synovium of hOA patients express NGF. Sixty-six patients who received total hip replacement and a diagnosis of hOA were enrolled. We measured NGF mRNA expression in synovial samples obtained from 50 patients using qPCR and analyzed the correlation of NGF expression with the CS inventory (CSI) score and Japanese Orthopaedic Association (JOA) score, a clinical scoring system for OA. To identify the synovial cells expressing NGF, we analyzed NGF mRNA expression in CD14+ and CD14- cells, which represent macrophage-rich and fibroblast-rich fractions, respectively, extracted from 8 patients. To further identify which macrophage subtypes express NGF, we examined NGF mRNA expression in CD14high and CD14low cells sorted from 8 patients. Synovial NGF mRNA expression was negatively correlated with JOA score but positively correlated with CSI score (JOA pain, r = -0.337, P = 0.017; CSI score, r = 0.358, P = 0.011). Significantly greater levels of NGF were observed in CD14- cells compared to CD14+ cells (P = 0.036) and in CD14high cells compared to CD14low cells (P = 0.008). In conclusion, synovial NGF expression is correlated with the degree of pain and CS in hOA patients. NGF is predominantly expressed in synovial fibroblasts. Further, CD14high synovial macrophages expressed higher levels of NGF. Our results may provide a novel NGF-targeted therapeutic strategy for hOA pain.


Proteomic identification of altered cerebral proteins in the complex regional pain syndrome animal model.

  • Francis Sahngun Nahm‎ et al.
  • BioMed research international‎
  • 2014‎

Complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder. Although the exact pathophysiology of CRPS is not fully understood, central and peripheral mechanisms might be involved in the development of this disorder. To reveal the central mechanism of CRPS, we conducted a proteomic analysis of rat cerebrum using the chronic postischemia pain (CPIP) model, a novel experimental model of CRPS.


Bioinformatics Genes and Pathway Analysis for Chronic Neuropathic Pain after Spinal Cord Injury.

  • Guan Zhang‎ et al.
  • BioMed research international‎
  • 2017‎

It is well known spinal cord injury (SCI) can cause chronic neuropathic pain (NP); however its underlying molecular mechanisms remain elusive. This study aimed to disclose differentially expressed genes (DEGs) and activated signaling pathways in association with SCI induced chronic NP, in order to identify its diagnostic and therapeutic targets. Microarray dataset GSE5296 has been downloaded from Gene Expression Omnibus (GEO) database. Significant analysis of microarray (SAM), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and pathway network analysis have been used to compare changes of DEGs and signaling pathways between the SCI and sham-injury group. As a result, DEGs analysis showed there were 592 DEGs with significantly altered expression; among them Ccl3 expression showed the highest upregulation which implicated its association with SCI induced chronic NP. Moreover, KEGG analysis found 209 pathways changed significantly; among them the most significantly activated one is MAPK signaling pathway, which is in line with KEGG analysis results. Our results show Ccl3 is highly associated with SCI induced chronic NP; as the exosomes with Ccl3 can be easily and efficiently detected in peripheral blood, Ccl3 may serve as a potential prognostic target for the diagnosis and treatment of SCI induced chronic NP.


The Lumbodorsal Fascia as a Potential Source of Low Back Pain: A Narrative Review.

  • Jan Wilke‎ et al.
  • BioMed research international‎
  • 2017‎

The lumbodorsal fascia (LF) has been proposed to represent a possible source of idiopathic low back pain. In fact, histological studies have demonstrated the presence of nociceptive free nerve endings within the LF, which, furthermore, appear to exhibit morphological changes in patients with chronic low back pain. However, it is unclear how these characteristics relate to the aetiology of the pain. In vivo elicitation of back pain via experimental stimulation of the LF suggests that dorsal horn neurons react by increasing their excitability. Such sensitization of fascia-related dorsal horn neurons, in turn, could be related to microinjuries and/or inflammation in the LF. Despite available data point towards a significant role of the LF in low back pain, further studies are needed to better understand the involved neurophysiological dynamics.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: