Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 8,619 papers

Mitochondrial oxidative stress causes insulin resistance without disrupting oxidative phosphorylation.

  • Daniel J Fazakerley‎ et al.
  • The Journal of biological chemistry‎
  • 2018‎

Mitochondrial oxidative stress, mitochondrial dysfunction, or both have been implicated in insulin resistance. However, disentangling the individual roles of these processes in insulin resistance has been difficult because they often occur in tandem, and tools that selectively increase oxidant production without impairing mitochondrial respiration have been lacking. Using the dimer/monomer status of peroxiredoxin isoforms as an indicator of compartmental hydrogen peroxide burden, we provide evidence that oxidative stress is localized to mitochondria in insulin-resistant 3T3-L1 adipocytes and adipose tissue from mice. To dissociate oxidative stress from impaired oxidative phosphorylation and study whether mitochondrial oxidative stress per se can cause insulin resistance, we used mitochondria-targeted paraquat (MitoPQ) to generate superoxide within mitochondria without directly disrupting the respiratory chain. At ≤10 μm, MitoPQ specifically increased mitochondrial superoxide and hydrogen peroxide without altering mitochondrial respiration in intact cells. Under these conditions, MitoPQ impaired insulin-stimulated glucose uptake and glucose transporter 4 (GLUT4) translocation to the plasma membrane in both adipocytes and myotubes. MitoPQ recapitulated many features of insulin resistance found in other experimental models, including increased oxidants in mitochondria but not cytosol; a more profound effect on glucose transport than on other insulin-regulated processes, such as protein synthesis and lipolysis; an absence of overt defects in insulin signaling; and defective insulin- but not AMP-activated protein kinase (AMPK)-regulated GLUT4 translocation. We conclude that elevated mitochondrial oxidants rapidly impair insulin-regulated GLUT4 translocation and significantly contribute to insulin resistance and that MitoPQ is an ideal tool for studying the link between mitochondrial oxidative stress and regulated GLUT4 trafficking.


Congenital Hypermetabolism and Uncoupled Oxidative Phosphorylation.

  • Rebecca D Ganetzky‎ et al.
  • The New England journal of medicine‎
  • 2022‎

We describe the case of identical twin boys who presented with low body weight despite excessive caloric intake. An evaluation of their fibroblasts showed elevated oxygen consumption and decreased mitochondrial membrane potential. Exome analysis revealed a de novo heterozygous variant in ATP5F1B, which encodes the β subunit of mitochondrial ATP synthase (also called complex V). In yeast, mutations affecting the same region loosen coupling between the proton motive force and ATP synthesis, resulting in high rates of mitochondrial respiration. Expression of the mutant allele in human cell lines recapitulates this phenotype. These data support an autosomal dominant mitochondrial uncoupling syndrome with hypermetabolism. (Funded by the National Institutes of Health.).


Oxidative Phosphorylation Promotes Primary Melanoma Invasion.

  • Amel Salhi‎ et al.
  • The American journal of pathology‎
  • 2020‎

Dermal invasion is a hallmark of malignant melanoma. Although the molecular alterations that drive the progression of primary melanoma to metastatic disease have been studied extensively, the early progression of noninvasive primary melanoma to an invasive state is poorly understood. To elucidate the mechanisms underlying the transition from radial to vertical growth, the first step in melanoma invasion, we developed a zebrafish melanoma model in which constitutive activation of ribosomal protein S6 kinase A1 drives tumor invasion. Transcriptomic analysis of ribosomal protein S6 kinase A1-activated tumors identified metabolic changes, including up-regulation of genes associated with oxidative phosphorylation. Vertical growth phase human melanoma cells show higher oxygen consumption and preferential utilization of glutamine compared to radial growth phase melanoma cells. Peroxisome proliferator activated receptor γ coactivator (PGC)-1α, has been proposed as a master regulator of tumor oxidative phosphorylation. In human primary melanoma specimens, PGC1α protein expression was found to be positively associated with increased tumor thickness and expression of the proliferative marker Ki-67 and the reactive oxygen species scavenger receptor class A member 3. PGC1α depletion modulated cellular processes associated with primary melanoma growth and invasion, including oxidative stress. These results support a role for PGC1α in mediating glutamine-driven oxidative phosphorylation to facilitate the invasive growth of primary melanoma.


Oxidative phosphorylation selectively orchestrates tissue macrophage homeostasis.

  • Stefanie K Wculek‎ et al.
  • Immunity‎
  • 2023‎

In vitro studies have associated oxidative phosphorylation (OXPHOS) with anti-inflammatory macrophages, whereas pro-inflammatory macrophages rely on glycolysis. However, the metabolic needs of macrophages in tissues (TMFs) to fulfill their homeostatic activities are incompletely understood. Here, we identified OXPHOS as the highest discriminating process among TMFs from different organs in homeostasis by analysis of RNA-seq data in both humans and mice. Impairing OXPHOS in TMFs via Tfam deletion differentially affected TMF populations. Tfam deletion resulted in reduction of alveolar macrophages (AMs) due to impaired lipid-handling capacity, leading to increased cholesterol content and cellular stress, causing cell-cycle arrest in vivo. In obesity, Tfam depletion selectively ablated pro-inflammatory lipid-handling white adipose tissue macrophages (WAT-MFs), thus preventing insulin resistance and hepatosteatosis. Hence, OXPHOS, rather than glycolysis, distinguishes TMF populations and is critical for the maintenance of TMFs with a high lipid-handling activity, including pro-inflammatory WAT-MFs. This could provide a selective therapeutic targeting tool.


Rosamines targeting the cancer oxidative phosphorylation pathway.

  • Siang Hui Lim‎ et al.
  • PloS one‎
  • 2014‎

Reprogramming of energy metabolism is pivotal to cancer, so mitochondria are potential targets for anticancer therapy. A prior study has demonstrated the anti-proliferative activity of a new class of mitochondria-targeting rosamines. This present study describes in vitro cytotoxicity of second-generation rosamine analogs, their mode of action, and their in vivo efficacies in a tumor allografted mouse model. Here, we showed that these compounds exhibited potent cytotoxicity (average IC50<0.5 µM), inhibited Complex II and ATP synthase activities of the mitochondrial oxidative phosphorylation pathway and induced loss of mitochondrial transmembrane potential. A NCI-60 cell lines screen further indicated that rosamine analogs 4 and 5 exhibited potent antiproliferative effects with Log10GI50 = -7 (GI50 = 0.1 µM) and were more effective against a colorectal cancer sub-panel than other cell lines. Preliminary in vivo studies on 4T1 murine breast cancer-bearing female BALB/c mice indicated that treatment with analog 5 in a single dosing of 5 mg/kg or a schedule dosing of 3 mg/kg once every 2 days for 6 times (q2d×6) exhibited only minimal induction of tumor growth delay. Our results suggest that rosamine analogs may be further developed as mitochondrial targeting agents. Without a doubt proper strategies need to be devised to enhance tumor uptake of rosamines, i.e. by integration to carrier molecules for better therapeutic outcome.


Oxidative Phosphorylation System in Gastric Carcinomas and Gastritis.

  • René G Feichtinger‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2017‎

Switching of cellular energy production from oxidative phosphorylation (OXPHOS) by mitochondria to aerobic glycolysis occurs in many types of tumors. However, the significance of this switching for the development of gastric carcinoma and what connection it may have to Helicobacter pylori infection of the gut, a primary cause of gastric cancer, are poorly understood. Therefore, we investigated the expression of OXPHOS complexes in two types of human gastric carcinomas ("intestinal" and "diffuse"), bacterial gastritis with and without metaplasia, and chemically induced gastritis by using immunohistochemistry. Furthermore, we analyzed the effect of HP infection on several key mitochondrial proteins. Complex I expression was significantly reduced in intestinal type (but not diffuse) gastric carcinomas compared to adjacent control tissue, and the reduction was independent of HP infection. Significantly, higher complex I and complex II expression was present in large tumors. Furthermore, higher complex II and complex III protein levels were also obvious in grade 3 versus grade 2. No differences of OXPHOS complexes and markers of mitochondrial biogenesis were found between bacterially caused and chemically induced gastritis. Thus, intestinal gastric carcinomas, but not precancerous stages, are frequently characterized by loss of complex I, and this pathophysiology occurs independently of HP infection.


[Oxidative phosphorylation in the lung tissue in tuberculosis].

  • T A Tumanova‎
  • Problemy tuberkuleza‎
  • 1981‎

No abstract available


AIF-regulated oxidative phosphorylation supports lung cancer development.

  • Shuan Rao‎ et al.
  • Cell research‎
  • 2019‎

Cancer is a major and still increasing cause of death in humans. Most cancer cells have a fundamentally different metabolic profile from that of normal tissue. This shift away from mitochondrial ATP synthesis via oxidative phosphorylation towards a high rate of glycolysis, termed Warburg effect, has long been recognized as a paradigmatic hallmark of cancer, supporting the increased biosynthetic demands of tumor cells. Here we show that deletion of apoptosis-inducing factor (AIF) in a KrasG12D-driven mouse lung cancer model resulted in a marked survival advantage, with delayed tumor onset and decreased malignant progression. Mechanistically, Aif deletion leads to oxidative phosphorylation (OXPHOS) deficiency and a switch in cellular metabolism towards glycolysis in non-transformed pneumocytes and at early stages of tumor development. Paradoxically, although Aif-deficient cells exhibited a metabolic Warburg profile, this bioenergetic change resulted in a growth disadvantage of KrasG12D-driven as well as Kras wild-type lung cancer cells. Cell-autonomous re-expression of both wild-type and mutant AIF (displaying an intact mitochondrial, but abrogated apoptotic function) in Aif-knockout KrasG12D mice restored OXPHOS and reduced animal survival to the same level as AIF wild-type mice. In patients with non-small cell lung cancer, high AIF expression was associated with poor prognosis. These data show that AIF-regulated mitochondrial respiration and OXPHOS drive the progression of lung cancer.


Resveratrol inhibits cancer cell proliferation by impairing oxidative phosphorylation and inducing oxidative stress.

  • Sara Rodríguez-Enríquez‎ et al.
  • Toxicology and applied pharmacology‎
  • 2019‎

The resveratrol (RSV) efficacy to affect the proliferation of several cancer cell lines was initially examined. RSV showed higher potency to decrease growth of metastatic HeLa and MDA-MB-231 (IC50 = 200-250 μM) cells than of low metastatic MCF-7, SiHa and A549 (IC50 = 400-500 μM) and non-cancer HUVEC and 3T3 (IC50≥600 μM) cells after 48 h exposure. In order to elucidate the biochemical mechanisms underlying RSV anti-cancer effects, the energy metabolic pathways and the oxidative stress metabolism were analyzed in HeLa cells as metastatic-type cell model. RSV (200 μM/48 h) significantly decreased both glycolysis and oxidative phosphorylation (OxPhos) protein contents (30-90%) and fluxes (40-70%) vs. non-treated cells. RSV (100 μM/1-5 min) also decreased at a greater extent OxPhos flux (net ADP-stimulated respiration) of isolated tumor mitochondria (> 50%) than of non-tumor mitochondria (< 50%), particularly with succinate as oxidizable substrate. In addition, RSV promoted an excessive cellular ROS (2-3 times) production corresponding with a significant decrement in the SOD activity (but not in its content) and GSH levels; whereas the catalase, glutahione reductase, glutathione peroxidase and glutathione-S-transferase activities (but not their contents) remained unchanged. RSV (200 μM/48 h) also induced cellular death although not by apoptosis but rather by promoting a strong mitophagy activation (65%). In conclusion, RSV impaired OxPhos by inducing mitophagy and ROS over-production, which in turn halted metastatic HeLa cancer cell growth.


Oxidative stress-mediated mitochondrial fission promotes hepatic stellate cell activation via stimulating oxidative phosphorylation.

  • Yanni Zhou‎ et al.
  • Cell death & disease‎
  • 2022‎

Previous studies have demonstrated dysregulated mitochondrial dynamics in fibrotic livers and hepatocytes. Little is currently known about how mitochondrial dynamics are involved, nor is it clear how mitochondrial dynamics participate in hepatic stellate cell (HSC) activation. In the present study, we investigated the role of mitochondrial dynamics in HSC activation and the underlying mechanisms. We verified that mitochondrial fission was enhanced in human and mouse fibrotic livers and active HSCs. Moreover, increased mitochondrial fission driven by fis1 overexpression could promote HSC activation. Inhibiting mitochondrial fission using mitochondrial fission inhibitor-1 (Mdivi-1) could inhibit activation and induce apoptosis of active HSCs, indicating that increased mitochondrial fission is essential for HSC activation. Mdivi-1 treatment also induced apoptosis in active HSCs in vivo and thus ameliorated CCl4-induced liver fibrosis. We also found that oxidative phosphorylation (OxPhos) was increased in active HSCs, and OxPhos inhibitors inhibited activation and induced apoptosis in active HSCs. Moreover, increasing mitochondrial fission upregulated OxPhos, while inhibiting mitochondrial fission downregulated OxPhos, suggesting that mitochondrial fission stimulates OxPhos during HSC activation. Next, we found that inhibition of oxidative stress using mitoquinone mesylate (mitoQ) and Tempol inhibited mitochondrial fission and OxPhos and induced apoptosis in active HSCs, suggesting that oxidative stress contributes to excessive mitochondrial fission during HSC activation. In conclusion, our study revealed that oxidative stress contributes to enhanced mitochondrial fission, which triggers OxPhos during HSC activation. Importantly, inhibiting mitochondrial fission has huge prospects for alleviating liver fibrosis by eliminating active HSCs.


A simple assay for inhibitors of mycobacterial oxidative phosphorylation.

  • Serena A Harden‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

Oxidative phosphorylation, the combined activities of the electron transport chain (ETC) and ATP synthase, has emerged as a valuable target for antibiotics to treat infection with Mycobacterium tuberculosis and related pathogens. In oxidative phosphorylation, the ETC establishes a transmembrane electrochemical proton gradient that powers ATP synthesis. Monitoring oxidative phosphorylation with luciferase-based detection of ATP synthesis or measurement of oxygen consumption can be technically challenging and expensive. These limitations reduce the utility of these methods for characterization of mycobacterial oxidative phosphorylation inhibitors. Here, we show that fluorescence-based measurement of acidification of inverted membrane vesicles (IMVs) can detect and distinguish between inhibition of the ETC, inhibition of ATP synthase, and nonspecific membrane uncoupling. In this assay, IMVs from Mycobacterium smegmatis are acidified either through the activity of the ETC or ATP synthase, the latter modified genetically to allow it to serve as an ATP-driven proton pump. Acidification is monitored by fluorescence from 9-amino-6-chloro-2-methoxyacridine, which accumulates and quenches in acidified IMVs. Nonspecific membrane uncouplers prevent both succinate- and ATP-driven IMV acidification. In contrast, the ETC Complex III2IV2 inhibitor telacebec (Q203) prevents succinate-driven acidification but not ATP-driven acidification, and the ATP synthase inhibitor bedaquiline prevents ATP-driven acidification but not succinate-driven acidification. We use the assay to show that, as proposed previously, lansoprazole sulfide is an inhibitor of Complex III2IV2, whereas thioridazine uncouples the mycobacterial membrane nonspecifically. Overall, the assay is simple, low cost, and scalable, which will make it useful for identifying and characterizing new mycobacterial oxidative phosphorylation inhibitors.


Alterations of Oxidative Phosphorylation Complexes in Papillary Thyroid Carcinoma.

  • Franz A Zimmermann‎ et al.
  • Cells‎
  • 2018‎

The papillary thyroid carcinoma (PTC) is the most common malignant tumor of the thyroid gland, with disruptive mutations in mitochondrial complex I subunits reported at very low frequency. Furthermore, metabolic diversity of PTC has been postulated owing to variable messenger RNA (mRNA) expression of genes encoding subunits of the oxidative phosphorylation (OXHPOS) complexes. The aim of the present study was to evaluate the metabolic diversity of the OXPHOS system at the protein level by using immunohistochemical staining. Analysis of 18 human PTCs revealed elevated mitochondrial biogenesis but significantly lower levels of OXPHOS complex I in the tumor tissue (p < 0.0001) compared to the adjacent normal tissue. In contrast, OXPHOS complexes II⁻V were increased in the majority of PTCs. In three PTCs, we found pathologic mutations within mitochondrially encoded complex I subunits. Our data indicate that PTCs are characterized by an oncocytic metabolic signature that is in low complex I is combined with elevated mitochondrial mass and high complex II⁻V levels, which might be an important factor for tumor formation.


Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation.

  • Cong-Hui Yao‎ et al.
  • eLife‎
  • 2019‎

Proliferating cells often have increased glucose consumption and lactate excretion relative to the same cells in the quiescent state, a phenomenon known as the Warburg effect. Despite an increase in glycolysis, however, here we show that non-transformed mouse fibroblasts also increase oxidative phosphorylation (OXPHOS) by nearly two-fold and mitochondrial coupling efficiency by ~30% during proliferation. Both increases are supported by mitochondrial fusion. Impairing mitochondrial fusion by knocking down mitofusion-2 (Mfn2) was sufficient to attenuate proliferation, while overexpressing Mfn2 increased proliferation. Interestingly, impairing mitochondrial fusion decreased OXPHOS but did not deplete ATP levels. Instead, inhibition caused cells to transition from excreting aspartate to consuming it. Transforming fibroblasts with the Ras oncogene induced mitochondrial biogenesis, which further elevated OXPHOS. Notably, transformed fibroblasts continued to have elongated mitochondria and their proliferation remained sensitive to inhibition of Mfn2. Our results suggest that cell proliferation requires increased OXPHOS as supported by mitochondrial fusion.


Targeting Mitochondrial Oxidative Phosphorylation Abrogated Irinotecan Resistance in NSCLC.

  • Soohyun Lee‎ et al.
  • Scientific reports‎
  • 2018‎

Anticancer drug resistance is a major challenge of cancer therapy. We found that irinotecan-resistant NSCLC cells showed increased mitochondrial oxidative phosphorylation compared to the drug sensitive NSCLC cells. Previously, we found that combined inhibition of aldehyde dehydrogenase using gossypol, and mitochondrial complex I using phenformin, effectively reduced oxidative phosphorylation in NSCLC. Here, we showed that targeting oxidative phosphorylation with gossypol and phenformin abrogated irinotecan resistance in NSCLC. Furthermore, irinotecan treatment by blocking oxidative phosphorylation induced synergistic anti-cancer effect in NSCLC. The pre-clinical xenograft model of human NSCLC also demonstrated a therapeutic response to the dual targeting treatment. Therefore, this combination of gossypol and phenformin increases irinotecan sensitivity as well as preventing irinotecan resistance.


Suppression of Mic60 compromises mitochondrial transcription and oxidative phosphorylation.

  • Rui-Feng Yang‎ et al.
  • Scientific reports‎
  • 2015‎

Precise regulation of mtDNA transcription and oxidative phosphorylation (OXPHOS) is crucial for human health. As a component of mitochondrial contact site and cristae organizing system (MICOS), Mic60 plays a central role in mitochondrial morphology. However, it remains unclear whether Mic60 affects mitochondrial transcription. Here, we report that Mic60 interacts with mitochondrial transcription factors TFAM and TFB2M. Furthermore, we found that Mic60 knockdown compromises mitochondrial transcription and OXPHOS activities. Importantly, Mic60 deficiency decreased TFAM binding and mitochondrial RNA polymerase (POLRMT) recruitment to the mtDNA promoters. In addition, through mtDNA immunoprecipitation (mIP)-chromatin conformation capture (3C) assays, we found that Mic60 interacted with mtDNA and was involved in the architecture of mtDNA D-loop region. Taken together, our findings reveal a previously unrecognized important role of Mic60 in mtDNA transcription.


Importance of glycolysis and oxidative phosphorylation in advanced melanoma.

  • Jonhan Ho‎ et al.
  • Molecular cancer‎
  • 2012‎

Serum lactate dehydrogenase (LDH) is a prognostic factor for patients with stage IV melanoma. To gain insights into the biology underlying this prognostic factor, we analyzed total serum LDH, serum LDH isoenzymes, and serum lactate in up to 49 patients with metastatic melanoma. Our data demonstrate that high serum LDH is associated with a significant increase in LDH isoenzymes 3 and 4, and a decrease in LDH isoenzymes 1 and 2. Since LDH isoenzymes play a role in both glycolysis and oxidative phosphorylation (OXPHOS), we subsequently determined using tissue microarray (TMA) analysis that the levels of proteins associated with mitochondrial function, lactate metabolism, and regulators of glycolysis were all elevated in advanced melanomas compared with nevic melanocytes. To investigate whether in advanced melanoma, the glycolysis and OXPHOS pathways might be linked, we determined expression of the monocarboxylate transporters (MCT) 1 and 4. Analysis of a nevus-to-melanoma progression TMA revealed that MCT4, and to a lesser extend MCT1, were elevated with progression to advanced melanoma. Further analysis of human melanoma specimens using the Seahorse XF24 extracellular flux analyzer indicated that metastatic melanoma tumors derived a large fraction of energy from OXPHOS. Taken together, these findings suggest that in stage IV melanomas with normal serum LDH, glycolysis and OXPHOS may provide metabolic symbiosis within the same tumor, whereas in stage IV melanomas with high serum LDH glycolysis is the principle source of energy.


Oxidative phosphorylation promotes vascular calcification in chronic kidney disease.

  • Jia Shi‎ et al.
  • Cell death & disease‎
  • 2022‎

Metabolism has been reported to associate with the progression of vascular diseases. However, how vascular calcification in chronic kidney disease (CKD) is regulated by metabolic status remains poorly understood. Using a model of 5/6 nephrectomy, we demonstrated that the aortic tissues of CKD mice had a preference for using oxidative phosphorylation (OXPHOS). Both high phosphate and human uremic serum-stimulated vascular smooth muscle cells (VSMCs) had enhanced mitochondrial respiration capacity, while the glycolysis level was not significantly different. Besides, 2-deoxy-d-glucose (2-DG) exacerbated vascular calcification by upregulating OXPHOS. The activity of cytochrome c oxidase (COX) was higher in the aortic tissue of CKD mice than those of sham-operated mice. Moreover, the expression levels of COX15 were higher in CKD patients with aortic arch calcification (AAC) than those without AAC, and the AAC scores were correlated with the expression level of COX15. Suppressing COX sufficiently attenuated vascular calcification. Our findings verify the relationship between OXPHOS and calcification, and may provide potential therapeutic approaches for vascular calcification in CKD.


Exploring Thermal Sensitivities and Adaptations of Oxidative Phosphorylation Pathways.

  • Hélène Lemieux‎ et al.
  • Metabolites‎
  • 2022‎

Temperature shifts are a major challenge to animals; they drive adaptations in organisms and species, and affect all physiological functions in ectothermic organisms. Understanding the origin and mechanisms of these adaptations is critical for determining whether ectothermic organisms will be able to survive when faced with global climate change. Mitochondrial oxidative phosphorylation is thought to be an important metabolic player in this regard, since the capacity of the mitochondria to produce energy greatly varies according to temperature. However, organism survival and fitness depend not only on how much energy is produced, but, more precisely, on how oxidative phosphorylation is affected and which step of the process dictates thermal sensitivity. These questions need to be addressed from a new perspective involving a complex view of mitochondrial oxidative phosphorylation and its related pathways. In this review, we examine the effect of temperature on the commonly measured pathways, but mainly focus on the potential impact of lesser-studied pathways and related steps, including the electron-transferring flavoprotein pathway, glycerophosphate dehydrogenase, dihydroorotate dehydrogenase, choline dehydrogenase, proline dehydrogenase, and sulfide:quinone oxidoreductase. Our objective is to reveal new avenues of research that can address the impact of temperature on oxidative phosphorylation in all its complexity to better portray the limitations and the potential adaptations of aerobic metabolism.


PKM2 coordinates glycolysis with mitochondrial fusion and oxidative phosphorylation.

  • Tong Li‎ et al.
  • Protein & cell‎
  • 2019‎

A change in the metabolic flux of glucose from mitochondrial oxidative phosphorylation (OXPHOS) to aerobic glycolysis is regarded as one hallmark of cancer. However, the mechanisms underlying the metabolic switch between aerobic glycolysis and OXPHOS are unclear. Here we show that the M2 isoform of pyruvate kinase (PKM2), one of the rate-limiting enzymes in glycolysis, interacts with mitofusin 2 (MFN2), a key regulator of mitochondrial fusion, to promote mitochondrial fusion and OXPHOS, and attenuate glycolysis. mTOR increases the PKM2:MFN2 interaction by phosphorylating MFN2 and thereby modulates the effect of PKM2:MFN2 on glycolysis, mitochondrial fusion and OXPHOS. Thus, an mTOR-MFN2-PKM2 signaling axis couples glycolysis and OXPHOS to modulate cancer cell growth.


Oxidative Stress Signaling in Blast TBI-Induced Tau Phosphorylation.

  • Chunyu Wang‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2021‎

Traumatic brain injury caused by blast is associated with long-term neuropathological changes including tau phosphorylation and pathology. In this study, we aimed to determine changes in initial tau phosphorylation after exposure to a single mild blast and the potential contribution of oxidative stress response pathways. C57BL/6 mice were exposed to a single blast overpressure (BOP) generated by a compressed gas-driven shock tube that recapitulates battlefield-relevant open-field BOP, and cortical tissues were harvested at different time points up to 24 h after blast for Western blot analysis. We found that BOP caused elevated tau phosphorylation at Ser202/Thr205 detected by the AT8 antibody at 1 h post-blast followed by tau phosphorylation at additional sites (Ser262 and Ser396/Ser404 detected by PHF1 antibody) and conformational changes detected by Alz50 antibody. BOP also induced acute oxidative damage at 1 h post-blast and gradually declined overtime. Interestingly, Extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) were acutely activated in a similar temporal pattern as the rise and fall in oxidative stress after blast, with p38 showing a similar trend. However, glycogen synthase kinase-3 β (GSK3β) was inhibited at 1 h and remained inhibited for 24 h post blast. These results suggested that mitogen-activated protein kinases (MAPKs) but not GSK3β are likely involved in mediating the effects of oxidative stress on the initial increase of tau phosphorylation following a single mild blast.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: