Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Distinct evolutionary patterns of Oryza glaberrima deciphered by genome sequencing and comparative analysis.

  • Hiroaki Sakai‎ et al.
  • The Plant journal : for cell and molecular biology‎
  • 2011‎

Here we present the genomic sequence of the African cultivated rice, Oryza glaberrima, and compare these data with the genome sequence of Asian cultivated rice, Oryza sativa. We obtained gene-enriched sequences of O. glaberrima that correspond to about 25% of the gene regions of the O. sativa (japonica) genome by methylation filtration and subtractive hybridization of repetitive sequences. While patterns of amino acid changes did not differ between the two species in terms of the biochemical properties, genes of O. glaberrima generally showed a larger synonymous-nonsynonymous substitution ratio, suggesting that O. glaberrima has undergone a genome-wide relaxation of purifying selection. We further investigated nucleotide substitutions around splice sites and found that eight genes of O. sativa experienced changes at splice sites after the divergence from O. glaberrima. These changes produced novel introns that partially truncated functional domains, suggesting that these newly emerged introns affect gene function. We also identified 2451 simple sequence repeats (SSRs) from the genomes of O. glaberrima and O. sativa. Although tri-nucleotide repeats were most common among the SSRs and were overrepresented in the protein-coding sequences, we found that selection against indels of tri-nucleotide repeats was relatively weak in both African and Asian rice. Our genome-wide sequencing of O. glaberrima and in-depth analyses provide rice researchers not only with useful genomic resources for future breeding but also with new insights into the genomic evolution of the African and Asian rice species.


Retrogenes in rice (Oryza sativa L. ssp. japonica) exhibit correlated expression with their source genes.

  • Hiroaki Sakai‎ et al.
  • Genome biology and evolution‎
  • 2011‎

Gene duplication occurs by either DNA- or RNA-based processes; the latter duplicates single genes via retroposition of messenger RNA. The expression of a retroposed gene copy (retrocopy) is expected to be uncorrelated with its source gene because upstream promoter regions are usually not part of the retroposition process. In contrast, DNA-based duplication often encompasses both the coding and the intergenic (promoter) regions; hence, expression is often correlated, at least initially, between DNA-based duplicates. In this study, we identified 150 retrocopies in rice (Oryza sativa L. ssp japonica), most of which represent ancient retroposition events. We measured their expression from high-throughput RNA sequencing (RNAseq) data generated from seven tissues. At least 66% of the retrocopies were expressed but at lower levels than their source genes. However, the tissue specificity of retrogenes was similar to their source genes, and expression between retrocopies and source genes was correlated across tissues. The level of correlation was similar between RNA- and DNA-based duplicates, and they decreased over time at statistically indistinguishable rates. We extended these observations to previously identified retrocopies in Arabidopsis thaliana, suggesting they may be general features of the process of retention of plant retrogenes.


Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data.

  • Yoshihiro Kawahara‎ et al.
  • Rice (New York, N.Y.)‎
  • 2013‎

Rice research has been enabled by access to the high quality reference genome sequence generated in 2005 by the International Rice Genome Sequencing Project (IRGSP). To further facilitate genomic-enabled research, we have updated and validated the genome assembly and sequence for the Nipponbare cultivar of Oryza sativa (japonica group).


Massive parallel sequencing of mRNA in identification of unannotated salinity stress-inducible transcripts in rice (Oryza sativa L.).

  • Hiroshi Mizuno‎ et al.
  • BMC genomics‎
  • 2010‎

Microarray technology is limited to monitoring the expression of previously annotated genes that have corresponding probes on the array. Computationally annotated genes have not fully been validated, because ESTs and full-length cDNAs cannot cover entire transcribed regions. Here, mRNA-Seq (an Illumina cDNA sequencing application) was used to monitor whole mRNAs of salinity stress-treated rice tissues.


Domain Unknown Function DUF1668-Containing Genes in Multiple Lineages Are Responsible for F1 Pollen Sterility in Rice.

  • Mitsukazu Sakata‎ et al.
  • Frontiers in plant science‎
  • 2020‎

Postzygotic reproductive isolation maintains species integrity and uniformity and contributes to speciation by restricting the free gene flow between divergent species. In this study we identify causal genes of two Mendelian factors S22A and S22B on rice chromosome 2 inducing F1 pollen sterility in hybrids between Oryza sativa japonica-type cultivar Taichung 65 (T65) and a wild relative of rice species Oryza glumaepatula. The causal gene of S22B in T65 encodes a protein containing DUF1668 and gametophytically expressed in the anthers, designated S22B_j. The O. glumaepatula allele S22B-g, allelic to S22B_j, possesses three non-synonymous substitutions and a 2-bp deletion, leading to a frameshifted translation at the S22B C-terminal region. Transcription level of S22B-j and/or S22B_g did not solely determine the fertility of pollen grains by genotypes at S22B. Western blotting of S22B found that one major band with approximately 46 kDa appeared only at the mature stage and was reduced on semi-sterile heterozygotes at S22B, implying that the 46 kDa band may associated in hybrid sterility. In addition, causal genes of S22A in T65 were found to be S22A_j1 and S22A_j3 encoding DUF1668-containing protein. The allele of a wild rice species Oryza meridionalis Ng at S22B, designated S22B_m, is a loss-of-function allele probably due to large deletion of the gene lacking DUF1668 domain and evolved from the different lineage of O. glumaepatula. Phylogenetic analysis of DUF1668 suggested that many gene duplications occurred before the divergence of current crops in Poaceae, and loss-of-function mutations of DUF1668-containing genes represent the candidate causal genetic events contributing to hybrid incompatibilities. The duplicated DUF1668-domain gene may provide genetic potential to induce hybrid incompatibility by consequent mutations after divergence.


Duplication and Loss of Function of Genes Encoding RNA Polymerase III Subunit C4 Causes Hybrid Incompatibility in Rice.

  • Giao Ngoc Nguyen‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2017‎

Reproductive barriers are commonly observed in both animals and plants, in which they maintain species integrity and contribute to speciation. This report shows that a combination of loss-of-function alleles at two duplicated loci, DUPLICATED GAMETOPHYTIC STERILITY 1 (DGS1) on chromosome 4 and DGS2 on chromosome 7, causes pollen sterility in hybrid progeny derived from an interspecific cross between cultivated rice, Oryza sativa, and an Asian annual wild rice, O. nivara Male gametes carrying the DGS1 allele from O. nivara (DGS1-nivaras ) and the DGS2 allele from O. sativa (DGS2-T65s ) were sterile, but female gametes carrying the same genotype were fertile. We isolated the causal gene, which encodes a protein homologous to DNA-dependent RNA polymerase (RNAP) III subunit C4 (RPC4). RPC4 facilitates the transcription of 5S rRNAs and tRNAs. The loss-of-function alleles at DGS1-nivaras and DGS2-T65s were caused by weak or nonexpression of RPC4 and an absence of RPC4, respectively. Phylogenetic analysis demonstrated that gene duplication of RPC4 at DGS1 and DGS2 was a recent event that occurred after divergence of the ancestral population of Oryza from other Poaceae or during diversification of AA-genome species.


RNA sequencing-mediated transcriptome analysis of rice plants in endoplasmic reticulum stress conditions.

  • Yuhya Wakasa‎ et al.
  • BMC plant biology‎
  • 2014‎

The endoplasmic reticulum (ER) stress response is widely known to function in eukaryotes to maintain the homeostasis of the ER when unfolded or misfolded proteins are overloaded in the ER. To understand the molecular mechanisms of the ER stress response in rice (Oryza sativa L.), we previously analyzed the expression profile of stably transformed rice in which an ER stress sensor/transducer OsIRE1 was knocked-down, using the combination of preliminary microarray and quantitative RT-PCR. In this study, to obtain more detailed expression profiles of genes involved in the initial stages of the ER stress response in rice, we performed RNA sequencing of wild-type and transgenic rice plants produced by homologous recombination in which endogenous genomic OsIRE1 was replaced by missense alleles defective in ribonuclease activity.


Genetic control of inflorescence architecture during rice domestication.

  • Zuofeng Zhu‎ et al.
  • Nature communications‎
  • 2013‎

Inflorescence architecture is a key agronomical factor determining grain yield, and thus has been a major target of cereal crop domestication. Transition from a spread panicle typical of ancestral wild rice (Oryza rufipogon Griff.) to the compact panicle of present cultivars (O. sativa L.) was a crucial event in rice domestication. Here we show that the spread panicle architecture of wild rice is controlled by a dominant gene, OsLG1, a previously reported SBP-domain transcription factor that controls rice ligule development. Association analysis indicates that a single-nucleotide polymorphism-6 in the OsLG1 regulatory region led to a compact panicle architecture in cultivars during rice domestication. We speculate that the cis-regulatory mutation can fine-tune the spatial expression of the target gene, and that selection of cis-regulatory mutations might be an efficient strategy for crop domestication.


A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate.

  • Toshiyuki Takai‎ et al.
  • Scientific reports‎
  • 2013‎

Improvement of leaf photosynthesis is an important strategy for greater crop productivity. Here we show that the quantitative trait locus GPS (GREEN FOR PHOTOSYNTHESIS) in rice (Oryza sativa L.) controls photosynthesis rate by regulating carboxylation efficiency. Map-based cloning revealed that GPS is identical to NAL1 (NARROW LEAF1), a gene previously reported to control lateral leaf growth. The high-photosynthesis allele of GPS was found to be a partial loss-of-function allele of NAL1. This allele increased mesophyll cell number between vascular bundles, which led to thickened leaves, and it pleiotropically enhanced photosynthesis rate without the detrimental side effects observed in previously identified nal1 mutants, such as dwarf plant stature. Furthermore, pedigree analysis suggested that rice breeders have repeatedly selected the high-photosynthesis allele in high-yield breeding programs. The identification and utilization of NAL1 (GPS) can enhance future high-yield breeding and provides a new strategy for increasing rice productivity.


Natural variation of the RICE FLOWERING LOCUS T 1 contributes to flowering time divergence in rice.

  • Eri Ogiso-Tanaka‎ et al.
  • PloS one‎
  • 2013‎

In rice (Oryza sativa L.), there is a diversity in flowering time that is strictly genetically regulated. Some indica cultivars show extremely late flowering under long-day conditions, but little is known about the gene(s) involved. Here, we demonstrate that functional defects in the florigen gene RFT1 are the main cause of late flowering in an indica cultivar, Nona Bokra. Mapping and complementation studies revealed that sequence polymorphisms in the RFT1 regulatory and coding regions are likely to cause late flowering under long-day conditions. We detected polymorphisms in the promoter region that lead to reduced expression levels of RFT1. We also identified an amino acid substitution (E105K) that leads to a functional defect in Nona Bokra RFT1. Sequencing of the RFT1 region in rice accessions from a global collection showed that the E105K mutation is found only in indica, and indicated a strong association between the RFT1 haplotype and extremely late flowering in a functional Hd1 background. Furthermore, SNPs in the regulatory region of RFT1 and the E105K substitution in 1,397 accessions show strong linkage disequilibrium with a flowering time-associated SNP. Although the defective E105K allele of RFT1 (but not of another florigen gene, Hd3a) is found in many cultivars, relative rate tests revealed no evidence for differential rate of evolution of these genes. The ratios of nonsynonymous to synonymous substitutions suggest that the E105K mutation resulting in the defect in RFT1 occurred relatively recently. These findings indicate that natural mutations in RFT1 provide flowering time divergence under long-day conditions.


Construction of pseudomolecule sequences of the aus rice cultivar Kasalath for comparative genomics of Asian cultivated rice.

  • Hiroaki Sakai‎ et al.
  • DNA research : an international journal for rapid publication of reports on genes and genomes‎
  • 2014‎

Having a deep genetic structure evolved during its domestication and adaptation, the Asian cultivated rice (Oryza sativa) displays considerable physiological and morphological variations. Here, we describe deep whole-genome sequencing of the aus rice cultivar Kasalath by using the advanced next-generation sequencing (NGS) technologies to gain a better understanding of the sequence and structural changes among highly differentiated cultivars. The de novo assembled Kasalath sequences represented 91.1% (330.55 Mb) of the genome and contained 35 139 expressed loci annotated by RNA-Seq analysis. We detected 2 787 250 single-nucleotide polymorphisms (SNPs) and 7393 large insertion/deletion (indel) sites (>100 bp) between Kasalath and Nipponbare, and 2 216 251 SNPs and 3780 large indels between Kasalath and 93-11. Extensive comparison of the gene contents among these cultivars revealed similar rates of gene gain and loss. We detected at least 7.39 Mb of inserted sequences and 40.75 Mb of unmapped sequences in the Kasalath genome in comparison with the Nipponbare reference genome. Mapping of the publicly available NGS short reads from 50 rice accessions proved the necessity and the value of using the Kasalath whole-genome sequence as an additional reference to capture the sequence polymorphisms that cannot be discovered by using the Nipponbare sequence alone.


Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics.

  • Hiroaki Sakai‎ et al.
  • Plant & cell physiology‎
  • 2013‎

The Rice Annotation Project Database (RAP-DB, http://rapdb.dna.affrc.go.jp/) has been providing a comprehensive set of gene annotations for the genome sequence of rice, Oryza sativa (japonica group) cv. Nipponbare. Since the first release in 2005, RAP-DB has been updated several times along with the genome assembly updates. Here, we present our newest RAP-DB based on the latest genome assembly, Os-Nipponbare-Reference-IRGSP-1.0 (IRGSP-1.0), which was released in 2011. We detected 37,869 loci by mapping transcript and protein sequences of 150 monocot species. To provide plant researchers with highly reliable and up to date rice gene annotations, we have been incorporating literature-based manually curated data, and 1,626 loci currently incorporate literature-based annotation data, including commonly used gene names or gene symbols. Transcriptional activities are shown at the nucleotide level by mapping RNA-Seq reads derived from 27 samples. We also mapped the Illumina reads of a Japanese leading japonica cultivar, Koshihikari, and a Chinese indica cultivar, Guangluai-4, to the genome and show alignments together with the single nucleotide polymorphisms (SNPs) and gene functional annotations through a newly developed browser, Short-Read Assembly Browser (S-RAB). We have developed two satellite databases, Plant Gene Family Database (PGFD) and Integrative Database of Cereal Gene Phylogeny (IDCGP), which display gene family and homologous gene relationships among diverse plant species. RAP-DB and the satellite databases offer simple and user-friendly web interfaces, enabling plant and genome researchers to access the data easily and facilitating a broad range of plant research topics.


Asymmetric distribution of gene expression in the centromeric region of rice chromosome 5.

  • Hiroshi Mizuno‎ et al.
  • Frontiers in plant science‎
  • 2011‎

There is controversy as to whether gene expression is silenced in the functional centromere. The complete genomic sequences of the centromeric regions in higher eukaryotes have not been fully elucidated, because the presence of highly repetitive sequences complicates many aspects of genomic sequencing. We performed resequencing, assembly, and sequence finishing of two P1-derived artificial chromosome clones in the centromeric region of rice (Oryza sativa L.) chromosome 5 (Cen5). The pericentromeric region, where meiotic recombination is silenced, is located at the center of chromosome 5 and is 2.14 Mb long; a total of six restriction-fragment-length polymorphism markers (R448, C1388, S20487S, E3103S, C53260S, and R2059) genetically mapped at 54.6 cM were located in this region. In the pericentromeric region, 28 genes were annotated on the short arm and 45 genes on the long arm. To quantify all transcripts in this region, we performed massive parallel sequencing of mRNA. Transcriptional density (total length of transcribed region/length of the genomic region) and expression level (number of uniquely mapped reads/length of transcribed region) were calculated on the basis of the mapped reads on the rice genome. Transcriptional density and expression level were significantly lower in Cen5 than in the average of the other chromosomal regions. Moreover, transcriptional density in Cen5 was significantly lower on the short arm than on the long arm; the distribution of transcriptional density was asymmetric. The genomic sequence of Cen5 has been integrated into the most updated reference rice genome sequence constructed by the International Rice Genome Sequencing Project.


Gene organization in rice revealed by full-length cDNA mapping and gene expression analysis through microarray.

  • Kouji Satoh‎ et al.
  • PloS one‎
  • 2007‎

Rice (Oryza sativa L.) is a model organism for the functional genomics of monocotyledonous plants since the genome size is considerably smaller than those of other monocotyledonous plants. Although highly accurate genome sequences of indica and japonica rice are available, additional resources such as full-length complementary DNA (FL-cDNA) sequences are also indispensable for comprehensive analyses of gene structure and function. We cross-referenced 28.5K individual loci in the rice genome defined by mapping of 578K FL-cDNA clones with the 56K loci predicted in the TIGR genome assembly. Based on the annotation status and the presence of corresponding cDNA clones, genes were classified into 23K annotated expressed (AE) genes, 33K annotated non-expressed (ANE) genes, and 5.5K non-annotated expressed (NAE) genes. We developed a 60mer oligo-array for analysis of gene expression from each locus. Analysis of gene structures and expression levels revealed that the general features of gene structure and expression of NAE and ANE genes were considerably different from those of AE genes. The results also suggested that the cloning efficiency of rice FL-cDNA is associated with the transcription activity of the corresponding genetic locus, although other factors may also have an effect. Comparison of the coverage of FL-cDNA among gene families suggested that FL-cDNA from genes encoding rice- or eukaryote-specific domains, and those involved in regulatory functions were difficult to produce in bacterial cells. Collectively, these results indicate that rice genes can be divided into distinct groups based on transcription activity and gene structure, and that the coverage bias of FL-cDNA clones exists due to the incompatibility of certain eukaryotic genes in bacteria.


Simultaneous RNA-seq analysis of a mixed transcriptome of rice and blast fungus interaction.

  • Yoshihiro Kawahara‎ et al.
  • PloS one‎
  • 2012‎

A filamentous fungus, Magnaporthe oryzae, is a causal agent of rice blast disease, which is one of the most serious diseases affecting cultivated rice, Oryza sativa. However, the molecular mechanisms underlying both rice defense and fungal attack are not yet fully understood. Extensive past studies have characterized many infection-responsive genes in the pathogen and host plant, separately. To understand the plant-pathogen interaction comprehensively, it is valuable to monitor the gene expression profiles of both interacting organisms simultaneously in the same infected plant tissue. Although the host-pathogen interaction during the initial infection stage is important for the establishment of infection, the detection of fungal gene expression in infected leaves at the stage has been difficult because very few numbers of fungal cells are present. Using the emerging RNA-Seq technique, which has a wide dynamic range for expression analyses, we analyzed the mixed transcriptome of rice and blast fungus in infected leaves at 24 hours post-inoculation, which is the point when the primary infection hyphae penetrate leaf epidermal cells. We demonstrated that our method detected the gene expression of both the host plant and pathogen simultaneously in the same infected leaf blades in natural infection conditions without any artificial treatments. The upregulation of 240 fungal transcripts encoding putative secreted proteins was observed, suggesting that these candidates of fungal effector genes may play important roles in initial infection processes. The upregulation of transcripts encoding glycosyl hydrolases, cutinases and LysM domain-containing proteins were observed in the blast fungus, whereas pathogenesis-related and phytoalexin biosynthetic genes were upregulated in rice. Furthermore, more drastic changes in expression were observed in the incompatible interactions compared with the compatible ones in both rice and blast fungus at this stage. Our mixed transcriptome analysis is useful for the simultaneous elucidation of the tactics of host plant defense and pathogen attack.


Isolation of a novel UVB-tolerant rice mutant obtained by exposure to carbon-ion beams.

  • Nao Takano‎ et al.
  • Journal of radiation research‎
  • 2013‎

UVB radiation suppresses photosynthesis and protein biosynthesis in plants, which in turn decreases growth and productivity. Here, an ultraviolet-B (UVB)-tolerant rice mutant, utr319 (UV Tolerant Rice 319), was isolated from a mutagenized population derived from 2500 M1 seeds (of the UVB-resistant cultivar 'Sasanishiki') that were exposed to carbon ions. The utr319 mutant was more tolerant to UVB than the wild type. Neither the levels of UVB-induced cyclobutane pyrimidine dimers (CPDs) or (6-4) pyrimidine-pyrimidone photodimers [(6-4) photoproducts], nor the repair of CPDs or (6-4) photoproducts, was altered in the utr319 mutant. Thus, the utr319 mutant may be impaired in the production of a previously unidentified factor that confers UVB tolerance. To identify the mutated region in the utr319 mutant, microarray-based comparative genomic hybridization analysis was performed. Two adjacent genes on chromosome 7, Os07g0264900 and Os07g0265100, were predicted to represent the mutant allele. Sequence analysis of the chromosome region in utr319 revealed a deletion of 45 419 bp. RNAi analysis indicated that Os07g0265100 is most likely the mutated gene. Database analysis indicated that the Os07g0265100 gene, UTR319, encodes a putative protein with unknown characteristics or function. In addition, the homologs of UTR319 are conserved only among land plants. Therefore, utr319 is a novel UVB-tolerant rice mutant and UTR319 may be crucial for the determination of UVB sensitivity in rice, although the function of UTR319 has not yet been determined.


Simultaneous transcriptome analysis of Sorghum and Bipolaris sorghicola by using RNA-seq in combination with de novo transcriptome assembly.

  • Takayuki Yazawa‎ et al.
  • PloS one‎
  • 2013‎

The recent development of RNA sequencing (RNA-seq) technology has enabled us to analyze the transcriptomes of plants and their pathogens simultaneously. However, RNA-seq often relies on aligning reads to a reference genome and is thus unsuitable for analyzing most plant pathogens, as their genomes have not been fully sequenced. Here, we analyzed the transcriptomes of Sorghum bicolor (L.) Moench and its pathogen Bipolaris sorghicola simultaneously by using RNA-seq in combination with de novo transcriptome assembly. We sequenced the mixed transcriptome of the disease-resistant sorghum cultivar SIL-05 and B. sorghicola in infected leaves in the early stages of infection (12 and 24 h post-inoculation) by using Illumina mRNA-Seq technology. Sorghum gene expression was quantified by aligning reads to the sorghum reference genome. For B. sorghicola, reads that could not be aligned to the sorghum reference genome were subjected to de novo transcriptome assembly. We identified genes of B. sorghicola for growth of this fungus in sorghum, as well as genes in sorghum for the defense response. The genes of B. sorghicola included those encoding Woronin body major protein, LysM domain-containing intracellular hyphae protein, transcriptional factors CpcA and HacA, and plant cell-wall degrading enzymes. The sorghum genes included those encoding two receptors of the simple eLRR domain protein family, transcription factors that are putative orthologs of OsWRKY45 and OsWRKY28 in rice, and a class III peroxidase that is a homolog involved in disease resistance in the Poaceae. These defense-related genes were particularly strongly induced among paralogs annotated in the sorghum genome. Thus, in the absence of genome sequences for the pathogen, simultaneous transcriptome analysis of plant and pathogen by using de novo assembly was useful for identifying putative key genes in the plant-pathogen interaction.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: