2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Loss of RUNX3 expression inhibits bone invasion of oral squamous cell carcinoma.

  • Junhee Park‎ et al.
  • Oncotarget‎
  • 2017‎

High recurrence and lower survival rates in patients with oral squamous cell carcinoma (OSCC) are associated with its bone invasion. We identified the oncogenic role of RUNX3 during bone invasion by OSCC. Tumor growth and the generation of osteolytic lesions were significantly inhibited in mice that were subcutaneously inoculated with RUNX3-knockdown human OSCC cells. RUNX3 knockdown enhanced TGF-β-induced growth arrest and inhibited OSCC cell migration and invasion in the absence or presence of transforming growth factor-β (TGF-β), a major growth factor abundant in the bone microenvironment. RUNX3 knockdown induced cell cycle arrest at the G1 and G2 phases and promoted G2 arrest by TGF-β in Ca9.22 OSCC cells. RUNX3 knockdown also inhibited both the basal and TGF-β-induced epithelial-to-mesenchymal transition by increasing E-cadherin expression and suppressing the nuclear translocation of β-catenin. In addition, the expression and TGF-β-mediated induction of parathyroid hormone-related protein (PTHrP), one of key osteolytic factors, was blocked in RUNX3-knockdown OSCC cells. Furthermore, treating human osteoblastic cells with conditioned medium derived from RUNX3-knockdown OSCC cells reduced the receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoprotegerin ratio compared with treatment with conditioned medium from RUNX3-expressing cells. These findings indicate that RUNX3 expression in OSCC cells contributes to their bone invasion and the resulting osteolysis by inducing their malignant behaviors and production of osteolytic factors. RUNX3 alone or in combination with TGF-β and PTHrP may be a useful predictive biomarker and therapeutic target for bone invasion by oral cancer.


Epigallocatechin-3 gallate inhibits cancer invasion by repressing functional invadopodia formation in oral squamous cell carcinoma.

  • Young Sun Hwang‎ et al.
  • European journal of pharmacology‎
  • 2013‎

Although the polyphenol EGCG has various beneficial biological effects, its effect on cytoskeletal activities during cancer invasion is not well defined, and the precise molecular mechanisms are largely unknown. Here, we provide molecular evidence on the anti-invasion effect of EGCG in OSCC cells using an in vitro 3-D culture system and in vivo athymic mouse model. Briefly, EGCG exerted an inhibitory effect on the Matrigel-based Transwell invasion and migration of OSCC cells. These effects were not due to decreased cell viability or adhesion capacity to ECM. EGCG-treated OSCC cells possessed fully extended actin fibers without invadopodia, indicating a loss of ECM degradation capacity. Decreased phosphorylation of Src, CTTN, and FAK also followed EGCG treatment. Additionally, EGCG reduced activation of RhoA in dominant-negative RhoA N19 and constitutively active RhoA Q63E cells, and inhibited the invasive capability of these cells in the 3-D cell growth model. Furthermore, the administration of EGCG led to substantial inhibition of tumor growth and activation of invadopodial proteins in the tumor tissues of mice inoculated with OSCC cells. The data indicate the potential value of EGCG as an invadopodia-targeted anti-invasive agent in cancer therapy.


Isoliquiritigenin Inhibits Metastatic Breast Cancer Cell-induced Receptor Activator of Nuclear Factor Kappa-B Ligand/Osteoprotegerin Ratio in Human Osteoblastic Cells.

  • Sun Kyoung Lee‎ et al.
  • Journal of cancer prevention‎
  • 2015‎

Bone destruction induced by the metastasis of breast cancer cells is a frequent complication that is caused by the interaction between cancer cells and bone cells. Receptor activator of nuclear factor kappa-B ligand (RANKL) and the endogenous soluble RANKL inhibitor, osteoprotegerin (OPG), directly play critical roles in the differentiation, activity, and survival of osteoclasts. In patients with bone metastases, osteoclastic bone resorption promotes the majority of skeletal-related events and propagates bone metastases. Therefore, blocking osteoclast activity and differentiation via RANKL inhibition can be a promising therapeutic approach for cancer-associated bone diseases. We investigated the potential of isoliquiritigenin (ISL), which has anti-proliferative, anti-angiogenic, and anti-invasive effects, as a preventive and therapeutic agent for breast cancer cell-induced bone destruction. ISL at non-toxicity concentrations significantly inhibited the RANKL/OPG ratio by reducing the production of RANKL and restoring OPG production to control levels in hFOB1.19 cells stimulated with conditioned medium (CM) of MDA-MB-231 cells. In addition, ISL reduced the expression of cyclooxygenase-2 in hFOB1.19 cells stimulated by CM of MDA-MB-231 cells. Therefore, ISL may have inhibitory potential on breast cancer-induced bone destruction.


Liensinine and Nuciferine, Bioactive Components of Nelumbo nucifera, Inhibit the Growth of Breast Cancer Cells and Breast Cancer-Associated Bone Loss.

  • Eun Ji Kang‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2017‎

Once breast cancer cells grow aggressively and become lodged in the skeleton through migration and invasion, they interact with bone microenvironment and accelerate much more tumor growth and bone destruction. We investigated whether liensinine and nuciferine, major active components in Nelumbo nucifera (lotus), could prevent breast cancer cell-mediated bone destruction. Liensinine and nuciferine inhibited the growth of MDA-MB-231 and MCF-7 human breast cancer cells by inducing apoptosis and inhibiting proliferation via cell cycle arrest. Liensinine treatment led to the increased Bax/Bcl-2 ratio, activation of caspase-3, and subsequent cleavage of PARP. Liensinine also displayed significant inhibition on the migration and invasion of both MDA-MB-231 and MCF-7 human breast cancer cells compared with nuciferine. In addition, liensinine and nuciferine inhibited the receptor activator of nuclear factor kappa-B ligand- (RANKL-) induced osteoclast differentiation in mouse bone marrow macrophage cells and mature osteoclast-mediated bone resorption. Furthermore, oral administration of liensinine reduced the osteolysis in nude mice with intratibial injection of MDA-MB-231 cells. Collectively, liensinine and nuciferine may be promising candidates for preventing and treating breast cancer bone metastasis and the resulting osteolytic bone loss by targeting both cancer cells and osteoclasts. Liensinine has more potent anticancer and antibone resorptive activities than nuciferine.


Human antigen R-regulated CCL20 contributes to osteolytic breast cancer bone metastasis.

  • Sun Kyoung Lee‎ et al.
  • Scientific reports‎
  • 2017‎

Breast cancer mainly spreads to bone, causing decreased survival of patient. Human antigen R (HuR) and chemokines are important molecules associated with mRNA stability and cell-cell interaction in cancer biology. Here, HuR knockdown inhibited bone metastasis and osteolysis of metastatic breast cancer cells in mice and HuR expression promoted the metastatic ability of cancer cells via CCL20 and GM-CSF. In contrast with the findings for GM-CSF, ELAVL1 and CCL20 expressions were markedly increased in breast tumor tissues and ELAVL1 expression showed a strong positive correlation with CCL20 expression in breast cancer subtypes, particularly the basal-like subtype. Metastasis-free survival and overall survival were decreased in the breast cancer patients with high CCL20 expression. We further confirmed the role of CCL20 in breast cancer bone metastasis. Intraperitoneal administration of anti-CCL20 antibodies inhibited osteolytic breast cancer bone metastasis in mice. Treatment with CCL20 noticeably promoted cell invasion and the secretion of MMP-2/9 in the basal-like triple-negative breast cancer cell lines, not the luminal. Moreover, CCL20 elevated the receptor activator of nuclear factors kappa-B ligand/osteoprotegerin ratio in breast cancer and osteoblastic cells and mediated the crosstalk between these cells. Collectively, HuR-regulated CCL20 may be an attractive therapeutic target for breast cancer bone metastasis.


Loss of RUNX3 expression promotes cancer-associated bone destruction by regulating CCL5, CCL19 and CXCL11 in non-small cell lung cancer.

  • Hyun-Jeong Kim‎ et al.
  • The Journal of pathology‎
  • 2015‎

Non-small cell lung cancer (NSCLC) frequently metastasizes to bone, which is associated with significant morbidity and a dismal prognosis. RUNX3 functions as a tumour suppressor in lung cancer and loss of expression occurs more frequently in invasive lung adenocarcinoma than in pre-invasive lesions. Here, we show that RUNX3 and RUNX3-regulated chemokines are linked to NSCLC-mediated bone resorption. Notably, the receptor activator of nuclear factor-κB ligand (RANKL)/osteoprotegerin (OPG) ratio, an index of osteoclastogenic stimulation, was significantly increased in human osteoblastic cells treated with conditioned media derived from RUNX3-knockdown NSCLC cells. We aimed to identify RUNX3-regulated factors that modify the osteoblastic RANKL/OPG ratio and found that RUNX3 knockdown led to CCL5 up-regulation and down-regulation of CCL19 and CXCL11 in NSCLC cells. Tumour size was noticeably increased and more severe osteolytic lesions were induced in the calvaria and tibiae of mice that received RUNX3-knockdown cells. In response to RUNX3 knockdown, serum and tissue levels of CCL5 increased, whereas CCL19 and CXCL11 decreased. Furthermore, CCL5 increased the proliferation, migration, and invasion of lung cancer cells in a dose-dependent manner; however, CCL19 and CXCL11 did not show any significant effects. The RANKL/OPG ratio in osteoblastic cells was increased by CCL5 but reduced by CCL19 and CXCL11. CCL5 promoted osteoclast differentiation, but CCL19 and CXCL11 reduced osteoclastogenesis in RANKL-treated bone marrow macrophages. These findings suggest that RUNX3 and related chemokines are useful markers for the prediction and/or treatment of NSCLC-induced bone destruction.


Chemopreventive and Anticancer Activities of Allium victorialis var. platyphyllum Extracts.

  • Hyun-Jeong Kim‎ et al.
  • Journal of cancer prevention‎
  • 2014‎

Allium victorialis var. platyphyllum is an edible perennial herb and has been used as a vegetable or as a Korean traditional medicine. Allium species have received much attention owing to their diverse pharmacological properties, including antioxidative, anti-inflammatory, and anticancer activities. However, A. victorialis var. platyphyllum needs more study.


Type I saikosaponins a and d inhibit osteoclastogenesis in bone marrow-derived macrophages and osteolytic activity of metastatic breast cancer cells.

  • Ji-Eun Shin‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2015‎

Many osteopenic disorders, including a postmenopausal osteoporosis and lytic bone metastasis in breast and prostate cancers, are linked with a hyperosteoclast activity due to increased receptor activator of nuclear factor kappa-B ligand (RANKL) expression in osteoblastic/stromal cells. Therefore, inhibition of RANKL-induced osteoclastogenesis and osteoclast-induced bone resorption is an important approach in controlling pathophysiology of these skeletal diseases. We found that, of seven type I, II, and III saikosaponins isolated from Bupleurum falcatum, saikosaponins A and D, type I saikosaponins with an allyl oxide linkage between position 13 and 28 and two carbohydrate chains that are directly attached to the hydroxyl groups in position 3, exhibited the most potent inhibition on RANKL-induced osteoclast formation at noncytotoxic concentrations. The stereochemistry of the hydroxyl group at C16 did not affect their activity. Saikosaponins A and D inhibited the formation of resorptive pits by reducing the secreted levels of matrix metalloproteinase- (MMP-) 2, MMP-9, and cathepsin K in RANKL-induced osteoclasts. Additionally, saikosaponins A and D inhibited mRNA expression of parathyroid hormone-related protein as well as cell viability and invasion in metastatic human breast cancer cells. Thus, saikosaponins A and D can serve as a beneficial agent for the prevention and treatment of osteoporosis and cancer-induced bone loss.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: