Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Oviposition, Feeding Preferences and Distribution of Delia Species (Diptera: Anthomyiidae) in Eastern Canadian Onions.

  • Julia J Mlynarek‎ et al.
  • Insects‎
  • 2020‎

Delia antiqua, Delia platura and Delia florilega are three root maggot species commonly considered pests in Eastern Canadian onions. The onion maggot, D. antiqua, is considered the primary root maggot pest in onion but it remains unclear whether the other two species are also causing damage. In order to develop updated management strategies for root maggot, we tested adult oviposition and feeding preference by Delia larvae on four growth stages of onion using bioassays and we determined the Delia species composition across the four major onion growing regions in eastern Canada. Delia species oviposit readily on onion at the 5-7 true leaf growth stage but damage on onions is not statistically different between Delia species in our zero-inflated models. The four eastern Canadian onion growing regions have different proportions of Delia species. Southern Ontario and Quebec were the only two regions where Delia antiqua was collected. The highest average numbers of Delia spp. were caught in Quebec and Nova Scotia. Our study shows that timing is important in implementation of management strategies for root maggot in Eastern Canadian onions.


A De Novo Transcriptomics Approach Reveals Genes Involved in Thrips Tabaci Resistance to Spinosad.

  • Ran Rosen‎ et al.
  • Insects‎
  • 2021‎

The onion thrip, Thrips tabaci (Thysanoptera: Thripidae) is a major polyphagous pest that attacks a wide range of economically important crops, especially Allium species. The thrip's damage can result in yield loss of up to 60% in onions (Allium cepa). In the past few decades, thrip resistance to insecticides with various modes of actions have been documented. These include resistance to spinosad, a major active compound used against thrips, which was reported from Israel. Little is known about the molecular mechanisms underlying spinosad resistance in T. tabaci. We attempted to characterize the mechanisms involved in resistance to spinosad using quantitative transcriptomics. Susceptible (LC50 = 0.6 ppm) and resistant (LC50 = 23,258 ppm) thrip populations were collected from Israel. An additional resistant population (LC50 = 117 ppm) was selected in the laboratory from the susceptible population. De novo transcriptome analysis on the resistant and susceptible population was conducted to identify differently expressed genes (DGEs) that might be involved in the resistance against spinosad. In this analysis, 25,552 unigenes were sequenced, assembled, and functionally annotated, and more than 1500 DGEs were identified. The expression levels of candidate genes, which included cytochrome P450 and vittelogenin, were validated using quantitative RT-PCR. The cytochrome P450 expression gradually increased with the increase of the resistance. Higher expression levels of vitellogenin in the resistant populations were correlated with higher fecundity, suggesting a positive effect of the resistance on resistant populations. This research provides a novel genetic resource for onion thrips and a comprehensive molecular examination of resistant populations to spinosad. Those resources are important for future studies concerning thrips and resistance in insect pests regarding agriculture.


Combined Effect of Entomopathogens against Thrips tabaci Lindeman (Thysanoptera: Thripidae): Laboratory, Greenhouse and Field Trials.

  • Sehrish Gulzar‎ et al.
  • Insects‎
  • 2021‎

Onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae) is one of the most damaging insect pests of onions, Allium cepa L., which is an economically important agricultural crop cultivated worldwide. In this study, the combined application of entomopathogenic nematodes with entomopathogenic fungi against different soil dwelling stages of T. tabaci was evaluated. The nematodes included Heterorhabditis bacteriophora (VS strain) and Steinernema feltiae (SN strain), and fungi included Beauveria bassiana (WG-11) and Metarhizium anisopliae (WG-02); all four paired combinations (nematode + fungus) were included. In a small cup bioassay, only the combined application of H. bacteriophora and B. bassiana (WG-11) caused a synergistic interaction against pre-pupae, while all other combinations were compatible in an additive manner against pupae and late second instars. In a larger arena, a potted soil bioassay, again, combined applications of both pathogens produced greater mortality compared to single applications of each pathogen; all the combinations exhibited additive interactions, with the highest mortality observed in pre-pupae, followed by pupae and late second instar larvae using H. bacteriophora and B. bassiana (WG-11). Additionally, in the potted plant bioassay, lower adult emergence was observed from treated groups compared to control groups. Under field conditions, lower numbers of adults and larvae were found in treated groups relative to controls. Overall, the pre-pupal stage was more susceptible to the pathogen treatments, followed by pupae and late second instar larvae, and also combined applications of both pathogens suppressed the adult population. Combined application of entomopathogenic nematodes and fungi could be used for integrated pest management (IPM) of T. tabaci in onion production systems.


A New Perspective to Understand the Late Season Abundance of Delia antiqua (Diptera: Anthomyiidae): A Modeling Approach for the Hot Summer Effect.

  • Yong Kyun Shin‎ et al.
  • Insects‎
  • 2023‎

The onion maggot, Delia antiqua (Meigen), is one of the most important insect pests to agricultural crops within Allium genus, such as onions and garlic, worldwide. This study was conducted to understand the seasonal abundance of this pest, with special reference to the hot summer effect (HSE), which was incorporated into the model of summer diapause termination (SDT). We assumed that hot summer temperatures arrested the development of pupae during summer diapause. The estimated SDT curve showed that it occurred below a high-temperature limit of 22.1 °C and peaked at 16 °C. Accordingly, HSE resulted in delaying the late season fly abundance after summer, namely impacting the third generation. In Jinju, South Korea, the activity of D. antiqua was observed to cease for more than two months in the hot summer and this pattern was well described by model outputs. In the warmer Jeju Island region, Korea, the late season emergence was predicted to be greatly delayed, and D. antiqua did not exhibit a specific peak in the late season in the field. The abundance patterns observed in Korea were very different from those in countries such as the United States, Canada, and Germany. These regions are located at a much higher latitude (42° N to 53° N) than Korea (33° N to 35° N), and their HSE was less intense, showing overlapped or slightly separated second and third generation peaks. Consequently, our modeling approach for the summer diapause termination effectively explained the abundance patterns of D. antiqua in the late season. Also, the model will be useful for determining spray timing for emerging adults in late summer as onion and garlic are sown in the autumn in Korea.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: