Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 68 papers

Designing of a novel dextransucrase efficient in synthesizing oligosaccharides.

  • Qiu-Ping Li‎ et al.
  • International journal of biological macromolecules‎
  • 2017‎

Dextransucrase (EC2.4.5.1) from strain Leuconostoc mesenteroides 0326, which synthesizes dextran and oligosaccharides, which act as prebiotics, are popularly used in such industries as food and medicine. A novel dextransucrase efficient in synthesizing oligosaccharides was designed. We constructed the truncation mutant DSR-S1-ΔA (residues 1-3087bp) by deleting the 1494bp fragment of the C-terminal. The novel enzyme (MW: 110kDa) loss activity, when sucrose was used as only substrate. After adding an acceptor, DSR-S1-ΔA was fully activated but with heavily impaired polysaccharide synthesis ability. Instead, the enzyme produced a large amount of oligosaccharides. DSR-S1-ΔA showed transglycosylation for synthesizing more oligosaccharides of lower degree of polymerization (DP) with different acceptors, and it also improved the selection range of dextransucrase acceptor response to acceptors. The enzyme developed in this study can be applied in glycodiversifcation studies.


Structural analysis of heteropolysaccharide from Saccharina japonica and its derived oligosaccharides.

  • Weihua Jin‎ et al.
  • International journal of biological macromolecules‎
  • 2013‎

Degraded fucoidan (F1) was desulfated by DMSO-MeOH. And anion exchange chromatography was performed to fractionate desulfated F1 (ds-F1) into five fractions. Electrospray ionization mass spectrometry (ESI-MS) showed that each fraction contained at least one set of neutral and/or sulfated fucooligosaccharides in the form of methyl glycosides. And the structures of oligomeric fragments were characterized by ESI-CID-MS/MS and ESI-CID-MS/MS/MS. In addition, more structural features were shown by NMR. Therefore, it was concluded that LF1 contained a backbone of (1→3)-linked fucopyranose residues sulfated at C-4 and branched at C-2 by fucopyranose residues and fucoglucuronomannan, fucoglucuronan, galactan and xylan were found in LF-5. Finally, it was concluded that F1 was the middle component, which contained the information of both F0.5 and F2, indicating that the differences between F1 and F0.5, F2 might be derived primarily from the different needs of algae itself.


Efficient production of inulin and oligosaccharides using thermostable inulosucrase from Lactobacillus jensenii.

  • Dawei Ni‎ et al.
  • International journal of biological macromolecules‎
  • 2020‎

Fructan, inulin and levan, have been applied in many industrial fields because of their versatile properties and functions. Recently, microbial fructan has attracted much attention. In this study, a novel inulosucrase from Lactobacillus jensenii JV-V16 was constructed by truncating partial sequence. The truncated inulosucrase was overexpressed, purified and identified. The optimized pH and temperature for transfructosylation were pH 6.0 and 45 °C, respectively. The inulosucrase showed high thermostability and the half-life at 60 °C was 14.5 h. It also exhibited high transfructosylation capability, resulting in a high ratio of transfructosylation activity to hydrolysis activity. After optimizing the conditions of inulin production, 278.4 g/L inulin was obtained from 600 g/L sucrose with an approximately 46% conversion rate from sucrose to inulin. Additionally, acceptor reaction was attempted to explore the transfructosylation capability of the enzyme and some novel saccharides were detected, indicating the potential application in the synthesis of prebiotics.


κ-Carrageenan oligosaccharides induce microglia autophagy through AMPK/ULK1 pathway to regulate their immune response.

  • Zi-Ang Yao‎ et al.
  • International journal of biological macromolecules‎
  • 2022‎

Microglia are the main effector cells of immune response in central nervous system and are important targets for disease prevention and treatment. Κ-carrageenan Oligosaccharide (KOS), obtained by enzymatic hydrolysis from carrageenan of marine red algae, can inhibit the release of inflammatory factors from the over-activated microglia. The mechanism of microglia autophagy induced by KOS and its relationship with inflammation were studied to explore the development prospect of KOS in the research and treatment of inflammatory related diseases. The effect of KOS on inducing autophagy was detected by the secretion of cytokines by lipopolysaccharide (LPS)-activated microglia, respectively. The protein expression of autophagy-related signaling pathways were detected by Western Blot. The results showed that KOS could significantly protect the microglia from over-activated inflammatory by inducing the autophagy and inhibiting the release of inflammatory cytokines. And KOS could reduce the expression of the protein that related to the AMPK/ULK1 pathways in microglia, so as to regulate the autophagy pathway, and inhibit the inflammatory response of over-activated microglia. The study on the effect of KOS on microglia autophagy and excessive inflammatory response will provide a theoretical basis for further studies on the inhibition of nerve injury by regulating microglia autophagy and inflammatory response.


Biochemical characterization and immobilization of a novel pectate lyase ErPL2 for efficient preparation of pectin oligosaccharides.

  • Ling Zheng‎ et al.
  • International journal of biological macromolecules‎
  • 2022‎

Pectate lyase (ErPL2) from Echinicola rosea JL3085 showed maximal activity at 45 °C and pH 9.0 with 0.6 mM CaCl2. The Km and Vmax values of ErPL2 for polygalacturonic sodium were 2.098 mmol/L and 0.955 mmol/s, respectively. ErPL2 endolytically degraded pectic substances into oligosaccharides with degree of polymerization (DP) 1-5. To improve the thermostability and pH operation range, recombinant ErPL2 was immobilized onto mesoporous titanium oxide particles (MTOPs). MTOPs have abundant hydroxyl groups on the surface, which is a non-toxicity and good biocompatibility carrier. The residual enzyme activity of immobilized ErPL2 at 40 °C increased remarkably from 11% to 91% compared with free enzyme. The operable pH range was extended from 8-9 to 9-11. Surprisingly, the catalytic efficiency of immobilized ErPL2 was about 19 times higher than free enzyme. To our knowledge this is the first attempt of pectate lyase immobilized on MTOPs and it provides a new option for improving the catalytic performance.


Characterization of a 4,6‑α‑glucanotransferase from Lactobacillus reuteri E81 and production of malto-oligosaccharides with immune-modulatory roles.

  • Hümeyra İspirli‎ et al.
  • International journal of biological macromolecules‎
  • 2019‎

A wide number of Lactic Acid Bacteria (LAB) species produce α-glucans with their ability to synthesize glucansucrases (GS) which use sucrose as substrate for the glucan production. Recently another group of enzymes in LAB gained special interest for their ability to produce α-glucans targeting the substrates containing α1-4-linkages and synthesizing new (α1-6) or (α1-3)-linkages as α‑glucanotransferases. In this study, a putative 4,6‑α‑glucanotransferase (GTFB) from sourdough isolate Lactobacillus reuteri E81 was identified and expressed in Escherichia coli. The biochemical characterization of the GTFB-E81 confirmed its function as it cleaved the α1-4-linkages in different substrates and produced new gluco-oligomers/polymers containing α1-6 linkages together with the α1-4-linkages detected by NMR analysis. GTFB-E81 produced malto-oligosaccharides targeting maltose and maltoheptaose as substrates with up to DP 8 detected by TLC and ESI-MS/MS analysis. The functional roles of these malto-oligosaccharides were determined by testing their immune-modulatory functions in HT29 cells and they triggered the production of anti-inflammatory 1L-4 and pro-inflammatory IL-12 cytokines.


Characterization of a novel GH36 α-galactosidase from Bacillus megaterium and its application in degradation of raffinose family oligosaccharides.

  • Yan Huang‎ et al.
  • International journal of biological macromolecules‎
  • 2018‎

A novel α-galactosidase gene (agaB) from Bacillus megaterium 3-7 was cloned and expressed in Escherichia coli. The gene coded for a protein with 741 amino acids and a calculated molecular mass of 85.4kDa. The native structure of the recombined AgaB was determined to be a homotrimer. AgaB showed the highest identity of 57% with the characterized glycosyl hydrolase family 36 α-galactosidase from Clostridium stercorarium F-9. The enzyme exhibited a specific activity of 362.6U/mg at 37°C and pH 6.8. The enzyme showed strong resistance to proteases and great tolerance to galactose (Ki=12.5mM). AgaB displayed wide substrate specificity toward pNPGal, melibiose, raffinose and stachyose, with a Km of 0.42, 12.1, 17.0 and 25.4mM, respectively. Furthermore, AgaB completely hydrolyzed raffinose and stachyose present in soybean milk at 37°C within 4h when combined with trypsin. These favorable properties make AgaB a potential candidate for applications in the food and feed industries.


Construction and biochemical characterization of a novel hybrid alginate lyase with high activity by module recombination to prepare alginate oligosaccharides.

  • Fu Hu‎ et al.
  • International journal of biological macromolecules‎
  • 2021‎

Alginate lyases are essential tools to prepare alginate oligosaccharides with various biological activities. However, alginate lyases with excellent properties such as high activity and good thermal stability are still in shortage. Therefore, it is crucial to exploit new alginate lyases with high activity and polysaccharide-degrading efficiency for alginate oligosaccharide preparation. Herein, we proposed to construct a novel hybrid alginate lyase with improved property by module recombination. The hybrid alginate lyase, designated as Aly7C, was successfully constructed by recombining the carbohydrate binding module (CBM) of Aly7A with the catalytic module of Aly7B. Interestingly, the hybrid enzyme Aly7C exhibited higher activity than the catalytic domain. Moreover, it could degrade sodium alginate, polyM and polyG into oligosaccharides with degrees of polymerization (Dps) 2-5, which exhibit perfect product specificity. This work provides a new insight into well-defined generation of alginate oligosaccharides with associated CBMs and enhances the understanding of functions of the modules.


High level expression of a xyloglucanase from Rhizomucor miehei in Pichia pastoris for production of xyloglucan oligosaccharides and its application in yoghurt.

  • Nan-Nan Wang‎ et al.
  • International journal of biological macromolecules‎
  • 2021‎

The xyloglucanase gene (RmXEG12A) from Rhizomucor miehei CAU432 was successfully expressed in Pichia pastoris. The highest xyloglucanase activity of 25,700 U mL-1 was secreted using high cell density fermentation. RmXEG12A was optimally active at pH 7.0 and 65 °C, respectively. The xyloglucanase exhibited the highest specific activity towards xyloglucan (7915.5 U mg-1). RmXEG12A was subjected to hydrolyze tamarind powder to produce xyloglucan oligosaccharides with the degree of polymerization (DP) 7-9. The hydrolysis ratio of xyloglucan in tamarind powder was 89.8%. Moreover, xyloglucan oligosaccharides (2.0%, w/w) improved the water holding capacity (WHC) of yoghurt by 1.1-fold and promoted the growth of Lactobacillus bulgaricus and Streptococcus thermophiles by 2.3 and 1.6-fold, respectively. Therefore, a suitable xyloglucanase for tamarind powder hydrolysis was expressed in P. pastoris at high level and xyloglucan oligosaccharides improved the quality of yoghurt.


Inhibitory effects of soybean oligosaccharides and water-soluble soybean fibre on formation of putrefactive compounds from soy protein by gut microbiota.

  • Toru Nakata‎ et al.
  • International journal of biological macromolecules‎
  • 2017‎

Soybeans are part of the traditional food consumed in Asia countries. In this study, we investigated inhibitory effects of soybean oligosaccharides and water-soluble soybean fibre (Soyafibe) on putrefactive compounds from soy protein by gut microbiota in rats. Caecal microbial fermentation products and microbiota in rats fed 20% soy protein (SP-1) and whole soybean flour (SFL: protein content was 20%) diets were determined. The caecal environment in rats fed 20% soy protein without dietary fibre (SP-2) or with 2% Soyafibe (SFB) was also determined. Compared to SP-1 and SP-2 group, low indole content with high lactic acid was shown in SFL and SFB group, respectively. Using the 16S rRNA genes polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and pyrosequencing. Prevotella, Gram-negative anaerobic rods, were detected as dominant in both SFL and SFB groups. Our findings indicated that fermentable polysaccharides in soybeans have inhibitory effects on the formation of putrefactive compounds generated from soy protein by the microbiota.


Characterization of a high performance α-galactosidase from Irpex lacteus and its usage in removal of raffinose family oligosaccharides from soymilk.

  • Jin Myong Jang‎ et al.
  • International journal of biological macromolecules‎
  • 2019‎

Raffinose family oligosaccharides (RFOs) negatively affect nutritional value of legume-derived food and feed. It has been challenging to develop a high performance α-galactosidase excelled on catalytic efficiency, thermostability, pH stability and protease-resistance that could efficiently hydrolyze RFOs. In this study, the first GH family 27 α-galactosidase gene from Irpex lacteus was cloned. The gene had an open reading frame of 1314 bp interrupted by 12 introns. The recombinant α-galactosidase expressed in Pichia pastoris (rILgalA) had an apparent molecular mass of 64 kDa and was highly N-glycosylated. rILgalA was maximally active at pH 4.8 and 70 °C. It was stable over a broad pH range of 3-11, retained 90% of its activity after incubation at 60 °C for 10 h and exhibited strong resistance to digestive proteases. Unlike many other α-galactosidases, rILgalA was hyperactive on RFOs. Its specific activities toward melibiose, raffinose and stachyose were 644, 755 and 833 U mg-1, respectively. The corresponding Kcat/Km values were 120, 130 and 180 mM-1 s-1, which were the highest among reported α-galactosidases. rILgalA almost completely hydrolyzed raffinose and stachyose in soymilk at 60 °C in 30 min. These superior properties would make rILgalA an ideal remover of RFOs in food and feed industries.


A process for complete biodegradation of shrimp waste by a novel marine isolate Paenibacillus sp. AD with simultaneous production of chitinase and chitin oligosaccharides.

  • Aditya Kumar‎ et al.
  • International journal of biological macromolecules‎
  • 2018‎

Disposal of chitinaceous waste is a major problem of seafood industry. Most of the known chitinolytic organisms have been studied with respect to pure chitin as substrate. Use of these organisms for degradation of seafood waste has not been explored much. In present study a marine bacterium capable of proficiently degrading shrimp waste with co-production of value added products like chitinase and chitin oligosaccharides was isolated from seafood waste dumping sites. On 16s rRNA and biochemical analysis bacterium was found to be a novel species of genus Paenibacillus.Under optimized condition complete shrimp waste degradation (99%) was achieved along with chitinase yield of 20.01 IUml-1. SEM and FTIR showed the structural changes and breakage of bonds typical to that of chitin, which indicated that this process can be used for the degradation of other chitinaceous material also. Thin layer chromatography revealed the presence of chitin oligosaccharides of various degree of polymerization in the hydrolysate. Complete degradation of shrimp waste by Paenibacillus sp. AD makes it a potential candidate for the bioremediation of seafood waste at large scale. Concomitant production of chitinase and chitin oligosaccharides further makes the process economical and commercially viable.


Characterisation of an exo-(α-1,3)-3,6-anhydro-d-galactosidase produced by the marine bacterium Zobellia galactanivorans DsijT: Insight into enzyme preference for natural carrageenan oligosaccharides and kinetic characterisation on a novel chromogenic substrate.

  • Michael D Wallace‎ et al.
  • International journal of biological macromolecules‎
  • 2020‎

Flavobacteriia are important degraders in the marine carbon cycle, due to their ability to efficiently degrade complex algal polysaccharides. A novel exo-(α-1,3)-3,6-anhydro-D-galactosidase activity was recently discovered from a marine Flavobacteriia (Zobellia galactanivorans DsijT) on red algal carrageenan oligosaccharides. The enzyme activity is encoded by a gene found in the first described carrageenan-specific polysaccharide utilization locus (CarPUL) that codes for a family 129 glycoside hydrolase (GH129). The GH129 family is a CAZy family that is strictly partitioned into two niche-based clades: clade 1 contains human host bacterial enzymes and clade 2 contains marine bacterial enzymes. Clade 2 includes the GH129 exo-(α-1,3)-3,6-anhydro-D-galactosidase from Z. galactanivorans (ZgGH129). Despite the discovery of the unique activity for ZgGH129, finer details on the natural substrate specificity for this enzyme are lacking. Examination of enzyme activity on natural carrageenan oligomers using mass spectrometry demonstrated that ZgGH129 hydrolyses terminal 3,6-anhydro-D-galactose from unsulfated non-reducing end neo-β-carrabiose motifs. Due to the lack of chromogenic substrates to examine exo-(α-1,3)-3,6-anhydro-D-galactosidase activity, a novel substrate was synthesised to facilitate the first kinetic characterisation of an exo-(α-1,3)-3,6-anhydro-D-galactosidase, allowing determination of pH and temperature optimums and Michaelis-Menten steady state kinetic data.


Codium isthmocladum lectin 1 (CiL-1): Interaction with N-glycans explains antinociceptive and anti-inflammatory activities in adult zebrafish (Danio rerio).

  • Antônio Willame da Silva Alves‎ et al.
  • International journal of biological macromolecules‎
  • 2022‎

Inflammation and oxidative stress are processes associated with different human diseases. They are treated using drugs that have several side effects. Seaweed are sources of potentially relevant natural compounds for use as treatment of these disorders. Lectins are able to reversibly interact with complex carbohydrates and modulate cell membrane glycosylated receptors through this interaction. This study aimed to determine the antinociceptive and anti-inflammatory potential of CiL-1 in adult zebrafish by modulation of TRPA1 through lectin-glycan binding. Possible neuromodulation by TRPA1 channel was also evaluated by camphor pretreatment. CiL-1 was efficacious at all tested doses, revealing anti-nociceptive and anti-inflammatory effects in adult zebrafish. This galactose-binding lectin was also able to reduce the content of ROS in brain and liver. In silico analyses showed CiL-1 interactions with both ligands tested. LacNac2 presents the most favorable binding energy with the protein. The interaction occurs at 4 subsites as an extended conformation at the site. LacNac2-Sia had a less favorable curved-shape interaction energy. Based on the predictions made for the oligosaccharides, a tetra-antenate putative glycan was schematically constructed, illustrating an interaction between TRPA1 N-glycan and CiL-1. This binding seems to be related to CiL-1 anti-inflammatory activity as result of receptor modulation.


Characterization of a novel psychrophilic and halophilic β-1, 3-xylanase from deep-sea bacterium, Flammeovirga pacifica strain WPAGA1.

  • Zheng-Wen Cai‎ et al.
  • International journal of biological macromolecules‎
  • 2018‎

β-1, 3-Xylanase is one of the most important hydrolytic enzymes to prepare oligosaccharides as functional foods in seaweed industry. However, less than five β-1, 3-xylanases have been experimentally expressed and characterized; moreover, none of them is psychrophilic and salt tolerant. Here, we mined a novel β-1, 3-xylanase (Xyl512) from the genome of the deep-sea bacterium Flammeovirga pacifica strain WPAGA1 and biochemically characterized it in detail. The Xyl512 did not contain any carbohydrate-binding module; the catalytic domain of it belonged to the glycoside hydrolase family 26. The optimum temperature and pH of the purified β-1, 3-xylanase was 20 °C and pH 7.0 in the condition of no NaCl. However, they shifted to 30 °C and 7.5 with 1.5 mol/L NaCl, respectively. In this condition (1.5 mol/L NaCl), the overall activity was 2-fold as high as that without NaCl. Based on the residue interactions and the electrostatic surfaces, we addressed the possible mechanism of its adaption to low temperature and relative high NaCl concentration. The Xyl512 showed significantly reduced numbers of hydrogen bonds leading to a more flexible structure, which is likely to be responsible for its cold adaptation. While the negatively charged surface may contribute to its salt tolerance. The β-1, 3-xylanase we identified here was the first reported psychrophilic and halophilic one with functionally characterized. It could make new contributions to exploring and studying the β-1, 3-xylanase for further associated investigations.


Characterization of a novel thermostable GH7 endoglucanase from Chaetomium thermophilum capable of xylan hydrolysis.

  • Chengyao Hua‎ et al.
  • International journal of biological macromolecules‎
  • 2018‎

A new endoglucanase encoding gene (ctendo7) was cloned from the thermophilic fungus Chaetomium thermophilum and heterologously expressed in Pichia pastoris. The recombinant CTendo7 enzyme was purified by Ni2+ affinity chromatography and subsequently characterized. CTendo7 belongs to glycoside hydrolase family 7, and exhibited considerable activity against sodium carboxymethyl cellulose (CMC-Na) and xylan of 1.91 IU/mg and 3.05 IU/mg at the optimum reaction condition of 55 °C, pH 5.0, respectively. The purified enzyme displayed relatively good thermostability. The residual endoglucanase and xylanase activities were 74.3% and 66.2% after a 60 min pre-incubation at 70 °C. Additionally, Ag+, Fe3+ and Cu2+ negatively affected the enzyme's activity, while the presence of 1 mM and 5 mM Mn2+ significantly enhanced both endoglucanase and xylanase activities. Generation of soluble oligosaccharides from lignocellulose is a critical step in bioethanol production, and it is noteworthy that CTendo7 produced cello-oligosaccharides and xylo-oligosaccharides from the continuous enzymatic saccharification of CMC-Na and xylan, respectively. This is the first detailed report on a novel bifunctional endoglucanase/xylanase enzyme from C. thermophilum. Furthermore, the excellent properties of CTendo7 distinguish it as a promising candidate for industrial lignocellulosic biomass conversion.


Functional and structural investigation of a novel β-mannanase BaMan113A from Bacillus sp. N16-5.

  • Wenting Liu‎ et al.
  • International journal of biological macromolecules‎
  • 2021‎

Mannan is an important renewable resource whose backbone can be hydrolyzed by β-mannanases to generate manno-oligosaccharides of various sizes. Only a few glycoside hydrolase (GH) 113 family β-mannanases have been functionally and structurally characterize. Here, we report the function and structure of a novel GH113 β-mannanase from Bacillus sp. N16-5 (BaMan113A). BaMan113A exhibits a substrate preference toward manno-oligosaccharides and releases mannose and mannobiose as main hydrolytic products. The crystal structure of BaMan113A suggest that the enzyme shows a semi-enclosed substrate-binding cleft and the amino acids surrounding the +2 subsite form a steric barrier to terminate the substrate-binding tunnel. Based on these structural features, we conducted mutagenesis to engineer BaMan113A to remove the steric hindrance of the substrate-binding tunnel. We found that F101E and N236Y variants exhibit increased specific activity toward mannans comparing to the wild-type enzyme. Meanwhile, the product profiles of these two variants toward polysaccharides changed from mannose to a series of manno-oligosaccharides. The crystal structure of variant N236Y was also determined to illustrate the molecular basis underlying the mutation. In conclusion, we report the functional and structural features of a novel GH113 β-mannanase, and successfully improved its endo-acting activity by using structure-based engineering.


Characterization of a novel PL 17 family alginate lyase with exolytic and endolytic cleavage activity from marine bacterium Microbulbifer sp. SH-1.

  • Jin Yang‎ et al.
  • International journal of biological macromolecules‎
  • 2021‎

Alginate lyases are essential tools for depolymerizing alginate into bioactive oligosaccharides and fermentable monosaccharides. Herein, we characterized a novel polysaccharide lyase AlgSH17 from marine bacterium Microbulbifer sp. SH-1. The recombinant enzyme exhibited the maximum activity at 30 °C, pH 7.0 and retained 86.20% and 65.43% of its maximum activity at 20 °C and 15 °C, respectively, indicating that AlgSH17 has an excellent cold-adapted property. The final products of AlgSH17 mainly consisted of monosaccharides with small amounts of oligosaccharides with degrees of polymerization (DP) 2-6, suggesting that AlgSH17 possesses both exolytic and endolytic activity. Degradation pattern analysis indicated that AlgSH17 could degrade DP ≥ 4 oligosaccharides into disaccharides and trisaccharides by cleaving the endo-glycosidic bonds and further digest disaccharides and trisaccharides into monosaccharides in an exolytic manner. Products distribution and molecular docking analysis revealed that AlgSH17 could cleave the glycosidic bonds between -1 and +2 within the substrate. Furthermore, The ABTS+, hydroxyl and DPPH radicals scavenging activity of the enzymatic hydrolysates prepared by AlgSH17 reached up to 91.53%, 81.23% and 61.06%, respectively, and the enzymatic hydrolysates displayed an excellent preservation effect on fresh-cut apples. The above results suggested that AlgSH17 could be utilized for the production of monosaccharides, antioxidants and food additives.


Biochemical analyses of a novel thermostable GH5 endo β-1,4-mannanase with minor β-1,4-glucosidic cleavage activity from Bacillus sp. KW1 and its synergism with a commercial α-galactosidase on galactomannan hydrolysis.

  • Xi Chen‎ et al.
  • International journal of biological macromolecules‎
  • 2021‎

A novel GH5 endo-1,4-β-mannanase (BaMan5A) was identified from Bacillus sp. KW1, it shares the highest sequence identity (86%) with another characterized Bacillus endo-1,4-β-mannanase. The recombinant BaMan5A displayed maximum activity at pH 7.0 and 70 °C, it was stable at a broad pH range (pH 3.5-11.0) after 12-h incubation at 25 °C, and exhibited good thermostability, retaining about 100% and 85% activity after incubating at 60 °C for 12 h and 65 °C for 8 h, respectively. The results of polysaccharide hydrolysis revealed that the enzyme can only hydrolyze mannan substrates, including carob galactomannan, konjac glucomannan, 1,4-β-D-mannan, locust bean gum, and guar gum, yielding mannose, mannobiose, mannotriose, and some other oligosaccharides. The best substrate was carob galactomannan, the corresponding specific activity and Km value were 10,886 μmol/min/μmol and 3.31 mg/mL, respectively. Interestingly, BaMan5A was capable to hydrolyze both manno-oligosaccharides and cello-oligosaccharides, including mannotetraose, mannopentaose, mannohexaose, cellopentaose and cellohexaose. Furthermore, BaMan5A acted synergistically with a commercial α-galactosidase (CbAgal) on galactomannan depolymerization, a best synergy degree of 1.58 was achieved after optimizing enzyme ratios. This study not only expands the diversity of Bacillus GH5 β-mannanase, but also discloses the potential of BaMan5A in industrial application.


Involvement of a multifunctional rhamnosyltransferase in the synthesis of three related Acinetobacter baumannii capsular polysaccharides, K55, K74 and K85.

  • Johanna J Kenyon‎ et al.
  • International journal of biological macromolecules‎
  • 2021‎

KL55, KL74, and KL85 capsular polysaccharide (CPS) biosynthesis loci in Acinetobacter baumannii BAL_204, BAL_309, and LUH5543 genomes, respectively, are related and each contains genes for l-Rhap and d-GlcpA synthesis. The CPSs were isolated and studied by sugar analysis, Smith degradation, and 1H and 13C NMR spectroscopy. The K55 and K74 CPSs are built up of branched octasaccharide repeats (K units) containing one residue each of d-GlcpA and d-GlcpNAc and six residues of l-Rhap. The K55 unit differs from the K74 unit in the linkage between D-GlcpA and an l-Rhap residue in the K unit (1 → 3 versus 1 → 2) and linkage between K units. However, most K units in the isolated K74 CPS were modified by β-elimination of a side-chain α-l-Rhap-(1 → 3)-α-l-Rhap disaccharide from position 4 of GlcA to give 4-deoxy-l-threo-hex-4-enuronic acid (1:~3 ratio of intact and modified units). The K85 CPS has a branched heptasaccharide K unit similar to the K74 unit but with one fewer α-l-Rhap residue in the side chain. In contrast to previous findings on A. baumannii CPSs, each K locus includes fewer glycosyltransferase (Gtr) genes than the number required to form all linkages in the K units. Hence, one Gtr appears to be multifunctional catalysing formation of two 1 → 2 and one 1 → 3 linkages between the l-Rha residues.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: