Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Nr4a1 promotes cell adhesion and fusion by regulating Zeb1 transcript levels in myoblasts.

  • Yixuan Liu‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Nuclear receptor subfamily 4 group A member 1 (NR4A1) acts as a myogenic factor in muscle development and regeneration; however, it remains unclear how Nr4a1 regulates myoblast physiology. In this study, report a role for Nr4a1-mediated regulation of cell adhesion in myoblast and muscle tissue. Nr4a1-overexpression myoblast, Nr4a1-konckdown myoblast and mice gastrocnemius muscle following an injection with an adenovirus vector expression Nr4a1 (Nr4a1-AAV) were used to observe the changes in cell adhesion. Nr4a1 was found to enhance cell-cell contact and adhesion molecule expression in myoblasts. In contrast, the deletion of Nr4a1 expression inhibited junction and adhesion between myoblasts. Moreover, Nr4a1 increased myoblast adhesion via directly binding to an upstream site of zinc finger E-box binding homeobox 1 (Zeb1), which is required for myogenesis in myoblasts. In mice, Zeb1 induced increased cadherin and integrin expression in the gastrocnemius muscle following an injection with an adenovirus vector expressing Nr4a1(Nr4a1-AAV). These data indicate that Nr4a1 regulates myoblast adhesion via Zeb1 expression.


DNA methylation at CpG island shore and RXRα regulate NR2F2 in heart tissues of tetralogy of Fallot patients.

  • Li Xiaodi‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

The nuclear receptor subfamily 2 group F member 2 (NR2F2) gene encodes a ligand-inducible transcription factor involved in angiogenesis and heart development. This study aimed to elucidate the molecular mechanism of epigenetic regulation of NR2F2 in tetralogy of Fallot (TOF) development. In the present study, immunohistochemical staining showed that NR2F2 protein expression was significantly higher in the right ventricular outflow tract (RVOT) tissues of TOF cases compared with controls. The methylation status of the CpG island shore (CGIS) of the NR2F2 gene was decreased in TOF cases, and the CpG site 3 in the CGIS region of NR2F2 promoter was a differential methylation site. Furthermore, the methylation level of the CpG site 3 and the NR2F2 protein expression were significantly negatively correlated in TOF patients. In vitro functional analysis revealed that RXRα could upregulate the NR2F2 gene by directly binding to the CGIS in the NR2F2 promoter, while hypomethylation of the NR2F2 promoter via treatment with 5-azacytidine influenced the affinity of RXRα to its binding sites, as shown by ChIP-qPCR. These findings suggest that promoter hypomethylation activates NR2F2 by enhancing RXRα binding to NR2F2 CGIS in the development of TOF.


Transcription factor FOXA2-centered transcriptional regulation network in non-small cell lung cancer.

  • Sang-Min Jang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2015‎

Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be mutated in more than half of lung cancers. In this study, we propose tumor suppressor FOXA2 as an alternative target protein for therapies against lung cancer and reveal a possible FOXA2-centered transcriptional regulation network by identifying new target genes and binding partners of FOXA2 by using various screening techniques. The genes encoding Glu/Asp-rich carboxy-terminal domain 2 (CITED2), nuclear receptor subfamily 0, group B, member 2 (NR0B2), cell adhesion molecule 1 (CADM1) and BCL2-associated X protein (BAX) were identified as putative target genes of FOXA2. Additionally, the proteins including highly similar to heat shock protein HSP 90-beta (HSP90A), heat shock 70 kDa protein 1A variant (HSPA1A), histone deacetylase 1 (HDAC1) and HDAC3 were identified as novel interacting partners of FOXA2. Moreover, we showed that FOXA2-dependent promoter activation of BAX and p21 genes is significantly reduced via physical interactions between the identified binding partners and FOXA2. These results provide opportunities to understand the FOXA2-centered transcriptional regulation network and novel therapeutic targets to modulate this network in p53-deficient lung cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: