2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 57 papers

Generation of iPSC lines from a Nijmegen Breakage Syndrome patient.

  • Barbara Mlody‎ et al.
  • Stem cell research‎
  • 2015‎

Human dermal fibroblasts from a Nijmegen Breakage Syndrome (NBS) patient bearing the 657del5 mutation within the DNA repair gene NIBRIN were used to generate two iPSC-lines (vNBS8-iPS-c1, vNBS8-iPS-c2) by retroviral transduction of OCT4, SOX2, c-MYC and KLF4. Pluripotency was confirmed both in vivo and in vitro.


Human RAD50 deficiency in a Nijmegen breakage syndrome-like disorder.

  • Regina Waltes‎ et al.
  • American journal of human genetics‎
  • 2009‎

The MRE11/RAD50/NBN (MRN) complex plays a key role in recognizing and signaling DNA double-strand breaks (DSBs). Hypomorphic mutations in NBN (previously known as NBS1) and MRE11A give rise to the autosomal-recessive diseases Nijmegen breakage syndrome (NBS) and ataxia-telangiectasia-like disorder (ATLD), respectively. To date, no disease due to RAD50 deficiency has been described. Here, we report on a patient previously diagnosed as probably having NBS, with microcephaly, mental retardation, 'bird-like' face, and short stature. At variance with this diagnosis, she never had severe infections, had normal immunoglobulin levels, and did not develop lymphoid malignancy up to age 23 years. We found that she is compound heterozygous for mutations in the RAD50 gene that give rise to low levels of unstable RAD50 protein. Cells from the patient were characterized by chromosomal instability; radiosensitivity; failure to form DNA damage-induced MRN foci; and impaired radiation-induced activation of and downstream signaling through the ATM protein, which is defective in the human genetic disorder ataxia-telangiectasia. These cells were also impaired in G1/S cell-cycle-checkpoint activation and displayed radioresistant DNA synthesis and G2-phase accumulation. The defective cellular phenotype was rescued by wild-type RAD50. In conclusion, we have identified and characterized a patient with a RAD50 deficiency that results in a clinical phenotype that can be classified as an NBS-like disorder (NBSLD).


Mutation inactivation of Nijmegen breakage syndrome gene (NBS1) in hepatocellular carcinoma and intrahepatic cholangiocarcinoma.

  • Yan Wang‎ et al.
  • PloS one‎
  • 2013‎

Nijmegen breakage syndrome (NBS) with NBS1 germ-line mutation is a human autosomal recessive disease characterized by genomic instability and enhanced cancer predisposition. The NBS1 gene codes for a protein, Nbs1(p95/Nibrin), involved in the processing/repair of DNA double-strand breaks. Hepatocellular carcinoma (HCC) is a complex and heterogeneous tumor with several genomic alterations. Recent studies have shown that heterozygous NBS1 mice exhibited a higher incidence of HCC than did wild-type mice. The objective of the present study is to assess whether NBS1 mutations play a role in the pathogenesis of human primary liver cancer, including HBV-associated HCC and intrahepatic cholangiocarcinoma (ICC). Eight missense NBS1 mutations were identified in six of 64 (9.4%) HCCs and two of 18 (11.1%) ICCs, whereas only one synonymous mutation was found in 89 control cases of cirrhosis and chronic hepatitis B. Analysis of the functional consequences of the identified NBS1 mutations in Mre11-binding domain showed loss of nuclear localization of Nbs1 partner Mre11, one of the hallmarks for Nbs1 deficiency, in one HCC and two ICCs with NBS1 mutations. Moreover, seven of the eight tumors with NBS1 mutations had at least one genetic alteration in the TP53 pathway, including TP53 mutation, MDM2 amplification, p14ARF homozygous deletion and promoter methylation, implying a synergistic effect of Nbs1 disruption and p53 inactivation. Our findings provide novel insight on the molecular pathogenesis of primary liver cancer characterized by mutation inactivation of NBS1, a DNA repair associated gene.


Directed Alternative Splicing in Nijmegen Breakage Syndrome: Proof of Principle Concerning Its Therapeutical Application.

  • Bastian Salewsky‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2016‎

Over 90% of patients with Nijmegen breakage syndrome (NBS), a hereditary cancer disorder, are homoallelic for a 5 bp deletion in the NBN gene involved in the cellular response to DNA damage. This hypomorphic mutation leads to a carboxy-terminal protein fragment, p70-nibrin, with some residual function. Average age at malignancy, typically lymphoma, is 9.7 years. NBS patients are hypersensitive to chemotherapeutic and radiotherapeutic treatments, thus prevention of cancer development is of particular importance. Expression of an internally deleted NBN protein, p80-nibrin, has been previously shown to be associated with a milder cellular phenotype and absence of cancer in a 62-year-old NBS patient. Here we show that cells from this patient, unlike other NBS patients, have DNA replication and origin firing rates comparable to control cells. We used here antisense oligonucleotides to enforce alternative splicing in NBS patient cells and efficiently generate the same internally deleted p80-nibrin protein. Injecting the same antisense sequences as morpholino oligomers (VivoMorpholinos) into the tail vein of a humanized NBS murine mouse model also led to efficient alternative splicing in vivo. Thus, proof of principle for the use of antisense oligonucleotides as a potential cancer prophylaxis has been demonstrated.


Nijmegen breakage syndrome detected by newborn screening for T cell receptor excision circles (TRECs).

  • Jay P Patel‎ et al.
  • Journal of clinical immunology‎
  • 2015‎

Severe combined immunodeficiency (SCID) encompasses a group of disorders characterized by reduced or absent T-cell number and function and identified by newborn screening utilizing T-cell receptor excision circles (TRECs). This screening has also identified infants with T lymphopenia who lack mutations in typical SCID genes. We report an infant with low TRECs and non-SCID T lymphopenia, who proved upon whole exome sequencing to have Nijmegen breakage syndrome (NBS).


Nijmegen breakage syndrome: the clearance pathway for mutant nibrin protein is allele specific.

  • Bastian Salewsky‎ et al.
  • Gene‎
  • 2013‎

The autosomal recessive disorder Nijmegen breakage syndrome (NBS) is caused by mutations in the NBN gene which codes for the protein nibrin (NBS1; p95). In the majority of cases, a 5bp deletion, a founder mutation, leads to a hypomorphic 70kD protein, p70-nibrin, after alternative initiation of translation. Protein levels are of relevance for the clinical course of the disease, particularly with regard to malignancy. Here, mechanisms and efficiency of mutant protein clearance were examined in order to establish whether these have an impact on nibrin abundance. Cell lines from NBS patients and retroviral transductants were treated with proteasome and lysosome inhibitors and examined by semi-quantitative immunoblotting for p70-nibrin and p95-nibrin levels. The results show that p70-nibrin is degraded by the proteasome with varying efficiency in cell lines from different NBS patients leading to lower or higher steady state levels of this partially active protein fragment. In contrast, a previously described NBN missense mutation, which disturbs protein folding due to the substitution of a critical arginine by tryptophan, was found to be cleared by lysosomal microautophagy leading also to lower cellular levels. The data show that truncated nibrin and misfolded nibrin have different clearance pathways.


Telomere attrition and dysfunction: a potential trigger of the progeroid phenotype in nijmegen breakage syndrome.

  • Raneem Habib‎ et al.
  • Aging‎
  • 2020‎

Nibrin, as part of the NBN/MRE11/RAD50 complex, is mutated in Nijmegen breakage syndrome (NBS), which leads to impaired DNA damage response and lymphoid malignancy.


Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome.

  • R Varon‎ et al.
  • Cell‎
  • 1998‎

Nijmegen breakage syndrome (NBS) is an autosomal recessive chromosomal instability syndrome characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition. Cells from NBS patients are hypersensitive to ionizing radiation with cytogenetic features indistinguishable from ataxia telangiectasia. We describe the positional cloning of a gene encoding a novel protein, nibrin. It contains two modules found in cell cycle checkpoint proteins, a forkhead-associated domain adjacent to a breast cancer carboxy-terminal domain. A truncating 5 bp deletion was identified in the majority of NBS patients, carrying a conserved marker haplotype. Five further truncating mutations were identified in patients with other distinct haplotypes. The domains found in nibrin and the NBS phenotype suggest that this disorder is caused by defective responses to DNA double-strand breaks.


DNA damage in Nijmegen Breakage Syndrome cells leads to PARP hyperactivation and increased oxidative stress.

  • Harald Krenzlin‎ et al.
  • PLoS genetics‎
  • 2012‎

Nijmegen Breakage Syndrome (NBS), an autosomal recessive genetic instability syndrome, is caused by hypomorphic mutation of the NBN gene, which codes for the protein nibrin. Nibrin is an integral member of the MRE11/RAD50/NBN (MRN) complex essential for processing DNA double-strand breaks. Cardinal features of NBS are immunodeficiency and an extremely high incidence of hematological malignancies. Recent studies in conditional null mutant mice have indicated disturbances in redox homeostasis due to impaired DSB processing. Clearly this could contribute to DNA damage, chromosomal instability, and cancer occurrence. Here we show, in the complete absence of nibrin in null mutant mouse cells, high levels of reactive oxygen species several hours after exposure to a mutagen. We show further that NBS patient cells, which unlike mouse null mutant cells have a truncated nibrin protein, also have high levels of reactive oxygen after DNA damage and that this increased oxidative stress is caused by depletion of NAD+ due to hyperactivation of the strand-break sensor, Poly(ADP-ribose) polymerase. Both hyperactivation of Poly(ADP-ribose) polymerase and increased ROS levels were reversed by use of a specific Poly(ADP-ribose) polymerase inhibitor. The extremely high incidence of malignancy among NBS patients is the result of the combination of a primary DSB repair deficiency with secondary oxidative DNA damage.


Antioxidant Defense, Redox Homeostasis, and Oxidative Damage in Children With Ataxia Telangiectasia and Nijmegen Breakage Syndrome.

  • Mateusz Maciejczyk‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Ataxia-telangiectasia (AT) and Nijmegen breakage syndrome (NBS) belong to a group of primary immunodeficiency diseases (PI) characterized by premature aging, cerebral degeneration, immunoglobulin deficiency and higher cancer susceptibility. Despite the fact that oxidative stress has been demonstrated in vitro and in animal models of AT and NBS, the involvement of redox homeostasis disorders is still unclear in the in vivo phenotype of AT and NBS patients. Our study is the first to compare both enzymatic and non-enzymatic antioxidants as well as oxidative damage between AT and NBS subjects. Twenty two Caucasian children with AT and twelve patients with NBS were studied. Enzymatic and non-enzymatic antioxidants - glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase-1 (SOD) and uric acid (UA); redox status-total antioxidant capacity (TAC) and ferric reducing ability of plasma (FRAP); and oxidative damage products-8-hydroxy-2'-deoxyguanosine (8-OHdG), advanced glycation end products (AGE), advanced oxidation protein products (AOPP), 4-hydroxynonenal (4-HNE) protein adducts, and 8-isoprostanes (8-isop) were evaluated in serum or plasma samples. We showed that CAT, SOD and UA were significantly increased, while TAC and FRAP levels were statistically lower in the plasma of AT patients compared to controls. In NBS patients, only CAT activity was significantly elevated, while TAC was significantly decreased as compared to healthy children. We also showed higher oxidative damage to DNA (↑8-OHdG), proteins (↑AGE, ↑AOPP), and lipids (↑4-HNE, ↑8-isop) in both AT and NBS patients. Interestingly, we did not demonstrate any significant differences in the antioxidant defense and oxidative damage between AT and NBS patients. However, in AT children, we showed a positive correlation between 8-OHdG and the α-fetoprotein level as well as a negative correlation between 8-OHdG and IgA. In NBS, AGE was positively correlated with IgM and negatively with the IgG level. Summarizing, we demonstrated an imbalance in cellular redox homeostasis and higher oxidative damage in AT and NBS patients. Despite an increase in the activity/concentration of some antioxidants, the total antioxidant capacity is overwhelmed in children with AT and NBS and predisposes them to more considerable oxidative damage. Oxidative stress may play a major role in AT and NBS phenotype.


Characterization of the plant homolog of Nijmegen breakage syndrome 1: Involvement in DNA repair and recombination.

  • Noriyuki Akutsu‎ et al.
  • Biochemical and biophysical research communications‎
  • 2007‎

The Nbs1 gene is known to code for a protein involved in the hereditary cancer-prone disease, Nijmegen breakage syndrome. This gene is conserved in animals and fungi, but no plant homolog is known. The work reported here describes a homolog of Nbs1 isolated from higher plants. The Nbs1 proteins from both Arabidopsis thaliana and Oryza sativa are smaller in size than animal or yeast Nbs1, but both contain the conserved Nbs1 domains such as the FHA/BRCT domain, the Mre11-binding domain, and the Atm-interacting domain in orientations similar to what is seen in animal Nbs1. The OsNbs1 protein interacted not only with plant Mre11, but also with animal Mre11. In plants, OsNbs1 mRNA expression was found to be higher in the shoot apex and young flower, and AtNbs1 expression increased when plants were exposed to 100 Gy of X-rays. These results suggest that plant Nbs1 could participate in a Rad50/Mre11/Nbs1 complex, and could be essential for the regulation of DNA recombination and DNA damage responses.


Chromosomal Instability and Molecular Defects in Induced Pluripotent Stem Cells from Nijmegen Breakage Syndrome Patients.

  • Tomer Halevy‎ et al.
  • Cell reports‎
  • 2016‎

Nijmegen breakage syndrome (NBS) results from the absence of the NBS1 protein, responsible for detection of DNA double-strand breaks (DSBs). NBS is characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition. Here, we show successful reprogramming of NBS fibroblasts into induced pluripotent stem cells (NBS-iPSCs). Our data suggest a strong selection for karyotypically normal fibroblasts to go through the reprogramming process. NBS-iPSCs then acquire numerous chromosomal aberrations and show a delayed response to DSB induction. Furthermore, NBS-iPSCs display slower growth, mitotic inhibition, a reduced apoptotic response to stress, and abnormal cell-cycle-related gene expression. Importantly, NBS neural progenitor cells (NBS-NPCs) show downregulation of neural developmental genes, which seems to be mediated by P53. Our results demonstrate the importance of NBS1 in early human development, shed light on the molecular mechanisms underlying this severe syndrome, and further expand our knowledge of the genomic stress cells experience during the reprogramming process.


Functional deficiency of NBN, the Nijmegen breakage syndrome protein, in a p.R215W mutant breast cancer cell line.

  • Bianca Schröder-Heurich‎ et al.
  • BMC cancer‎
  • 2014‎

Mutations in NBN, the gene for Nijmegen Breakage Syndrome (NBS), are thought to predispose women to developing breast cancer, but a breast cancer cell line containing mutations in NBN has not yet been described. The p.R215W missense mutation occurs at sub-polymorphic frequencies in several populations. We aimed to investigate its functional impact in breast cancer cells from a carrier of this NBN mutation.


Evidence for a pre-malignant cell line in a skin biopsy from a patient with Nijmegen breakage syndrome.

  • Raneem Habib‎ et al.
  • Molecular cytogenetics‎
  • 2018‎

Nijmegen breakage syndrome is an autosomal recessive disorder characterized by microcephaly, immunodeficiency, hypersensitivity to X-irradiation, and a high predisposition to cancer. Nibrin, the product of the NBN gene, is part of the MRE11/RAD50 (MRN) complex that is involved in the repair of DNA double strand breaks (DSBs), and plays a critical role in the processing of DSBs in immune gene rearrangements, telomere maintenance, and meiotic recombination. NBS skin fibroblasts grow slowly in culture and enter early into senescence.


T Lymphocytes in Patients With Nijmegen Breakage Syndrome Demonstrate Features of Exhaustion and Senescence in Flow Cytometric Evaluation of Maturation Pathway.

  • Barbara Piatosa‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Patients with Nijmegen Breakage Syndrome (NBS) suffer from recurrent infections due to humoral and cellular immune deficiency. Despite low number of T lymphocytes and their maturation defect, the clinical manifestations of cell-mediated deficiency are not as severe as in case of patients with other types of combined immune deficiencies and similar T cell lymphopenia. In this study, multicolor flow cytometry was used for evaluation of peripheral T lymphocyte maturation according to the currently known differentiation pathway, in 46 patients with genetically confirmed NBS and 46 sex and age-matched controls. Evaluation of differential expression of CD27, CD31, CD45RA, CD95, and CD197 revealed existence of cell subsets so far not described in NBS patients. Although recent thymic emigrants and naïve T lymphocyte cell populations were significantly lower, the generation of antigen-primed T cells was similar or even greater in NBS patients than in healthy controls. Moreover, the senescent and exhausted T cell populations defined by expression of CD57, KLRG1, and PD1 were more numerous than in healthy people. Although this hypothesis needs further investigations, such properties might be related to an increased susceptibility to malignancy and milder clinical course than expected in view of T cell lymphopenia in patients with NBS.


Fibroblast-derived integration-free iPSC line ISRM-NBS1 from an 18-year-old Nijmegen Breakage Syndrome patient carrying the homozygous NBN c.657_661del5 mutation.

  • Soraia Martins‎ et al.
  • Stem cell research‎
  • 2019‎

Human fibroblasts cells from a female diagnosed with Nijmegen Breakage Syndrome (NBS) carrying the homozygous NBN c.657_661del5 mutation were used to generate integration-free induced pluripotent stem cells (iPSCs) by over-expressing episomal-based plasmids harbouring OCT4, SOX2, NANOG, KLF4, c-MYC and LIN28. The derived iPSC line - ISRM-NBS1 was defined as pluripotent based on (i) expression of pluripotency-associated markers (ii) embryoid body-based differentiation into cell types representative of the three germ layers and (iii) the similarity between the transcriptome of the iPSC line and the human embryonic stem cell line H1 with a Pearson correlation of 0.955.


Nijmegen Breakage Syndrome fibroblasts and iPSCs: cellular models for uncovering disease-associated signaling pathways and establishing a screening platform for anti-oxidants.

  • Barbara Mlody‎ et al.
  • Scientific reports‎
  • 2017‎

Nijmegen Breakage Syndrome (NBS) is associated with cancer predisposition, premature aging, immune deficiency, microcephaly and is caused by mutations in the gene coding for NIBRIN (NBN) which is involved in DNA damage repair. Dermal-derived fibroblasts from NBS patients were reprogrammed into induced pluripotent stem cells (iPSCs) in order to bypass premature senescence. The influence of antioxidants on intracellular levels of ROS and DNA damage were screened and it was found that EDHB-an activator of the hypoxia pathway, decreased DNA damage in the presence of high oxidative stress. Furthermore, NBS fibroblasts but not NBS-iPSCs were found to be more susceptible to the induction of DNA damage than their healthy counterparts. Global transcriptome analysis comparing NBS to healthy fibroblasts and NBS-iPSCs to embryonic stem cells revealed regulation of P53 in NBS fibroblasts and NBS-iPSCs. Cell cycle related genes were down-regulated in NBS fibroblasts. Furthermore, oxidative phosphorylation was down-regulated and glycolysis up-regulated specifically in NBS-iPSCs compared to embryonic stem cells. Our study demonstrates the utility of NBS-iPSCs as a screening platform for anti-oxidants capable of suppressing DNA damage and a cellular model for studying NBN de-regulation in cancer and microcephaly.


Evidence that the Nijmegen breakage syndrome protein, an early sensor of double-strand DNA breaks (DSB), is involved in HIV-1 post-integration repair by recruiting the ataxia telangiectasia-mutated kinase in a process similar to, but distinct from, cellular DSB repair.

  • Johanna A Smith‎ et al.
  • Virology journal‎
  • 2008‎

Retroviral transduction involves integrase-dependent linkage of viral and host DNA that leaves an intermediate that requires post-integration repair (PIR). We and others proposed that PIR hijacks the host cell double-strand DNA break (DSB) repair pathways. Nevertheless, the geometry of retroviral DNA integration differs considerably from that of DSB repair and so the precise role of host-cell mechanisms in PIR remains unclear. In the current study, we found that the Nijmegen breakage syndrome 1 protein (NBS1), an early sensor of DSBs, associates with HIV-1 DNA, recruits the ataxia telangiectasia-mutated (ATM) kinase, promotes stable retroviral transduction, mediates efficient integration of viral DNA and blocks integrase-dependent apoptosis that can arise from unrepaired viral-host DNA linkages. Moreover, we demonstrate that the ATM kinase, recruited by NBS1, is itself required for efficient retroviral transduction. Surprisingly, recruitment of the ATR kinase, which in the context of DSB requires both NBS1 and ATM, proceeds independently of these two proteins. A model is proposed emphasizing similarities and differences between PIR and DSB repair. Differences between the pathways may eventually allow strategies to block PIR while still allowing DSB repair.


Variations in the NBN/NBS1 gene and the risk of breast cancer in non-BRCA1/2 French Canadian families with high risk of breast cancer.

  • Sylvie Desjardins‎ et al.
  • BMC cancer‎
  • 2009‎

The Nijmegen Breakage Syndrome is a chromosomal instability disorder characterized by microcephaly, growth retardation, immunodeficiency, and increased frequency of cancers. Familial studies on relatives of these patients indicated that they also appear to be at increased risk of cancer.


Induction of HSPA4 and HSPA14 by NBS1 overexpression contributes to NBS1-induced in vitro metastatic and transformation activity.

  • Chung-Yin Wu‎ et al.
  • Journal of biomedical science‎
  • 2011‎

Nijmegen breakage syndrome (NBS) is a chromosomal-instability syndrome associated with cancer predisposition, radiosensitivity, microcephaly, and growth retardation. The NBS gene product, NBS1 (p95) or nibrin, is a part of the MRN complex, a central player associated with double-strand break (DSB) repair. We previously demonstrated that NBS1 overexpression contributes to transformation through the activation of PI 3-kinase/Akt. NBS1 overexpression also induces epithelial-mesenchymal transition through the Snail/MMP2 pathway.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: