Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

From 2-Triethylammonium Ethyl Ether of 4-Stilbenol (MG624) to Selective Small-Molecule Antagonists of Human α9α10 Nicotinic Receptor by Modifications at the Ammonium Ethyl Residue.

  • Francesco Bavo‎ et al.
  • Journal of medicinal chemistry‎
  • 2022‎

Nicotinic acetylcholine receptors containing α9 subunits (α9*-nAChRs) are potential druggable targets arousing great interest for pain treatment alternative to opioids. Nonpeptidic small molecules selectively acting as α9*-nAChRs antagonists still remain an unattained goal. Here, through modifications of the cationic head and the ethylene linker, we have converted the 2-triethylammonium ethyl ether of 4-stilbenol (MG624), a well-known α7- and α9*-nAChRs antagonist, into some selective antagonists of human α9*-nAChR. Among these, the compound with cyclohexyldimethylammonium head (7) stands out for having no α7-nAChR agonist or antagonist effect along with very low affinity at both α7- and α3β4-nAChRs. At supra-micromolar concentrations, 7 and the other selective α9* antagonists behaved as partial agonists at α9*-nAChRs with a very brief response, followed by rebound current once the application is stopped and the channel is disengaged. The small or null postapplication activity of ACh seems to be related to the slow recovery of the rebound current.


Analogs of α-conotoxin PnIC selectively inhibit α7β2- over α7-only subtype nicotinic acetylcholine receptors via a novel allosteric mechanism.

  • Andrew A George‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2024‎

This study was undertaken to identify and characterize the first ligands capable of selectively identifying nicotinic acetylcholine receptors containing α7 and β2 subunits (α7β2-nAChR subtype). Basal forebrain cholinergic neurons express α7β2-nAChR. Here, they appear to mediate neuronal dysfunction induced by the elevated levels of oligomeric amyloid-β associated with early Alzheimer's disease. Additional work indicates that α7β2-nAChR are expressed across several further critically important cholinergic and GABAergic neuronal circuits within the central nervous system. Further studies, however, are significantly hindered by the inability of currently available ligands to distinguish heteromeric α7β2-nAChR from the closely related and more widespread homomeric α7-only-nAChR subtype. Functional screening using two-electrode voltage-clamp electrophysiology identified a family of α7β2-nAChR-selective analogs of α-conotoxin PnIC (α-CtxPnIC). A combined electrophysiology, functional kinetics, site-directed mutagenesis, and molecular dynamics approach was used to further characterize the α7β2-nAChR selectivity and site of action of these α-CtxPnIC analogs. We determined that α7β2-nAChR selectivity of α-CtxPnIC analogs arises from interactions at a site distinct from the orthosteric agonist-binding site shared between α7β2- and α7-only-nAChR. As numerous previously identified α-Ctx ligands are competitive antagonists of orthosteric agonist-binding sites, this study profoundly expands the scope of use of α-Ctx ligands (which have already provided important nAChR research and translational breakthroughs). More immediately, analogs of α-CtxPnIC promise to enable, for the first time, both comprehensive mapping of the distribution of α7β2-nAChR and detailed investigations of their physiological roles.


The potent and selective α4β2*/α6*-nicotinic acetylcholine receptor partial agonist 2-[5-[5-((S)Azetidin-2-ylmethoxy)-3-pyridinyl]-3-isoxazolyl]ethanol demonstrates antidepressive-like behavior in animal models and a favorable ADME-tox profile.

  • Li-Fang Yu‎ et al.
  • Pharmacology research & perspectives‎
  • 2014‎

Preclinical and clinical studies demonstrated that the inhibition of cholinergic supersensitivity through nicotinic antagonists and partial agonists can be used successfully to treat depressed patients, especially those who are poor responders to selective serotonin reuptake inhibitors (SSRIs). In our effort to develop novel antidepressant drugs, LF-3-88 was identified as a potent nicotinic acetylcholine receptor (nAChR) partial agonist with subnanomolar to nanomolar affinities for β2-containing nAChRs (α2β2, α3β2, α4β2, and α4β2*) and superior selectivity away from α3β4 - (K i > 10(4) nmol/L) and α7-nAChRs (K i > 10(4) nmol/L) as well as 51 other central nervous system (CNS)-related neurotransmitter receptors and transporters. Functional activities at different nAChR subtypes were characterized utilizing (86)Rb(+) ion efflux assays, two-electrode voltage-clamp (TEVC) recording in oocytes, and whole-cell current recording measurements. In mouse models, administration of LF-3-88 resulted in antidepressive-like behavioral signatures 15 min post injection in the SmartCube® test (5 and 10 mg/kg, i.p.; about 45-min session), decreased immobility in the forced swim test (1-3 mg/kg, i.p.; 1-10 mg/kg, p.o.; 30 min pretreatment, 6-min trial), and decreased latency to approach food in the novelty-suppressed feeding test after 29 days chronic administration once daily (5 mg/kg but not 10 mg/kg, p.o.; 15-min trial). In addition, LF-3-88 exhibited a favorable profile in pharmacokinetic/ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity) assays. This compound was also shown to cause no mortality in wild-type Balb/CJ mice when tested at 300 mg/kg. These results further support the potential of potent and selective nicotinic partial agonists for use in the treatment of depression.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: