Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Neurturin suppresses injury-induced neuronal activating transcription factor 3 expression in cultured guinea pig cardiac ganglia.

  • Beth A Young‎ et al.
  • The Journal of comparative neurology‎
  • 2008‎

Cultured guinea pig atrial whole mounts containing the intrinsic cardiac ganglia were used as an in vitro model to investigate the induction of the stress/injury marker activating transcription factor 3 (ATF-3). ATF-3 expression was quantified by using immunocytochemical labeling and real-time PCR. In freshly isolated ganglia, no neuronal or Schwann cell nuclei exhibited ATF-3 immunoreactivity. In 2-hour cultures, the induction of ATF-3 expression was evident in many Schwann cell nuclei, whereas no neuronal nuclei were ATF-3 immunoreactive. Beginning at 4 hours, the percentage of neurons with ATF-3-immunoreactive nuclei increased progressively, and, by 48 hours in culture, approximately 95% of the cardiac neurons had ATF-3-immunoreactive nuclei. Neurturin significantly suppressed ATF-3 expression in 48-hour-cultured neurons without effect on ATF-3 expression in Schwann cell nuclei. Neuturin also could reverse neuronal ATF-3 expression after its induction. The suppression of ATF-3 induction by neurturin was mediated by activation of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. Glial-derived neurotrophic factor (GDNF) also suppressed neuronal ATF-3 induction during culture. However, culture in serum-free media, presence of nerve growth factor, or addition of pituitary adenylate cyclase-activating polypeptide had no effect on ATF-3 induction in the 48-hour-cultured cardiac neurons. By 4 hours in culture, there was a significant increase in ATF-3 transcript levels, and neurturin partially suppressed ATF-3 transcript levels in 48-hour cultures. It is proposed that the loss of target-derived neurturin is a potential mechanism stimulating injury-induced expression of ATF-3 in cardiac neurons.


Neurturin regulates postnatal differentiation of parasympathetic pelvic ganglion neurons, initial axonal projections, and maintenance of terminal fields in male urogenital organs.

  • Hui Yan‎ et al.
  • The Journal of comparative neurology‎
  • 2008‎

We have investigated the development of autonomic nerves in the urogenital tract of male mice and the effect of neurturin gene deletion on this process. At birth, autonomic innervation of the reproductive organs was sparse, but urinary bladder smooth muscle was well innervated. Further innervation of reproductive tissues occurred until P21, but noradrenergic axons established their complete terminal field later than nitrergic cholinergic axons: in adults the former are more prevalent, yet this became apparent only at P7 (vas deferens, seminal vesicles), P14 (prostate) or after P14 (penis). Neurturin was essential for initial projection of axons (mucosa of vas deferens), maintenance of terminal fields (prostate and seminal vesicles), or both functions (cavernosum of penis). In contrast, some targets (e.g., bladder muscle and suburothelium, vas deferens smooth muscle) were unaffected by neurturin gene deletion. Pelvic ganglion neurons more than doubled between birth and adulthood, probably as aresult of continued maturation of p75-positive undifferentiated neuronal precursors rather than cell division. The adult number of neurons was achieved by P7 (sympathetic) or P21 (parasympathetic). In adult neurturin knockout mice, there were approximately 25% fewer parasympathetic neurons compared with wild types, because of failure of differentiation after P14. This study revealed the complexity of postnatal maturation of urogenital innervation, with each organ showing a distinct chronology of innervation and different requirement for neurturin. Our results also indicate that in adults there will be distinct differences in neurturin dependence between organs, such that proregenerative therapies may have to be tailored specifically for the nerve pathway of interest.


Sciatic nerve injury in adult rats causes distinct changes in the central projections of sensory neurons expressing different glial cell line-derived neurotrophic factor family receptors.

  • Janet R Keast‎ et al.
  • The Journal of comparative neurology‎
  • 2010‎

Most small unmyelinated neurons in adult rat dorsal root ganglia (DRG) express one or more of the coreceptors targeted by glial cell line-derived neurotrophic factor (GDNF), neurturin, and artemin (GFRalpha1, GFRalpha2, and GFRalpha3, respectively). The function of these GDNF family ligands (GFLs) is not fully elucidated but recent evidence suggests GFLs could function in sensory neuron regeneration after nerve injury and peripheral nociceptor sensitization. In this study we used immunohistochemistry to determine if the DRG neurons targeted by each GFL change after sciatic nerve injury. We compared complete sciatic nerve transection and the chronic constriction model and found that the pattern of changes incurred by each injury was broadly similar. In lumbar spinal cord there was a widespread increase in neuronal GFRalpha1 immunoreactivity (IR) in the L1-6 dorsal horn. GFRalpha3-IR also increased but in a more restricted area. In contrast, GFRalpha2-IR decreased in patches of superficial dorsal horn and this loss was more extensive after transection injury. No change in calcitonin gene-related peptide-IR was detected after either injury. Analysis of double-immunolabeled L5 DRG sections suggested the main effect of injury on GFRalpha1- and GFRalpha3-IR was to increase expression in both myelinated and unmyelinated neurons. In contrast, no change in basal expression of GFRalpha2-IR was detected in DRG by analysis of fluorescence intensity and there was a small but significant reduction in GFRalpha2-IR neurons. Our results suggest that the DRG neuronal populations targeted by GDNF, neurturin, or artemin and the effect of exogenous GFLs could change significantly after a peripheral nerve injury.


Expression of receptors for glial cell line-derived neurotrophic factor family ligands in sacral spinal cord reveals separate targets of pelvic afferent fibers.

  • Shelley L Forrest‎ et al.
  • The Journal of comparative neurology‎
  • 2008‎

Nerve growth factor has been proposed to mediate many structural and chemical changes in bladder sensory neurons after injury or inflammation. We have examined the expression of receptors for the glial cell line-derived neurotrophic factor (GDNF) family within sensory terminals located in the sacral spinal cord and in bladder-projecting sacral dorsal root ganglion neurons of adult female Sprague-Dawley rats. Nerve fibers immunolabelled for GFRalpha1 (GDNF receptor), GFRalpha2 (neurturin receptor), or GFRalpha3 (artemin receptor) showed distinct distribution patterns in the spinal cord, suggesting separate populations of sensory fibers with different functions: GFRalpha1-labeled fibers were in outer lamina II and the lateral-collateral pathway and associated with autonomic interneurons and preganglionic neurons; GFRalpha2-labeled fibers were only in inner lamina II; GFRalpha3-labeled fibers were in lamina I, the lateral-collateral pathway, and areas surrounding dorsal groups of preganglionic neurons and associated interneurons. Immunofluorescence studies of retrogradely labelled bladder-projecting neurons in sacral dorsal root ganglia showed that approximately 25% expressed GFRalpha1 or GFRalpha3 immunoreactivity, the preferred receptors for GDNF and artemin, respectively. After cyclophosphamide-induced bladder inflammation, fluorescence intensity of GFRalpha1-positive fibers increased within the dorsal horn, but there was no change in the GFRalpha2- or GFRalpha3-positive fibers. These studies have shown that GDNF and artemin may target bladder sensory neurons and potentially mediate plasticity of sacral visceral afferent neurons following inflammation. Our results have also revealed three distinct subpopulations of sensory fibers within the sacral spinal cord, which have not been identified previously using other markers.


Identification of perineal sensory neurons activated by innocuous heat.

  • Zahra Kiasalari‎ et al.
  • The Journal of comparative neurology‎
  • 2010‎

C-fiber sensory neurons comprise nociceptors and smaller populations of cells detecting innocuous thermal and light tactile stimuli. Markers identify subpopulations of these cells, aiding our understanding of their physiological roles. The transient receptor potential vanilloid 1 (TRPV1) cation channel is characteristic of polymodal C-fiber nociceptors and is sensitive to noxious heat, irritant vanilloids, and protons. By using immunohistochemistry, in situ hybridization, and retrograde tracing, we anatomically characterize a small subpopulation of C-fiber cells that express high levels of TRPV1 (HE TRPV1 cells). These cells do not express molecular markers normally associated with C-fiber nociceptors. Furthermore, they express a unique complement of neurotrophic factor receptors, namely, the trkC receptor for neurotrophin 3, as well as receptors for neurturin and glial cell line-derived neurotrophic factor. HE TRPV1 cells are distributed in sensory ganglia throughout the neuraxis, with higher numbers noted in the sixth lumbar ganglion. In this ganglion and others of the lumbar and sacral regions, 75% or more of such HE TRPV1 cells express estrogen receptor alpha, suggestive of their regulation by estrogen and a role in afferent sensation related to reproduction. Afferents from these cells provide innervation to the hairy skin of the perineal region and can be activated by thermal stimuli from 38 degrees C, with a maximal response at 42 degrees C, as indicated by induction of extracellular signal-regulated kinase phosphorylation. We hypothesize that apart from participating in normal thermal sensation relevant to thermoregulation and reproductive functions, HE TRPV1 cells may mediate burning pain in chronic pain syndromes with perineal localization.


Characterization of axons expressing the artemin receptor in the female rat urinary bladder: a comparison with other major neuronal populations.

  • Shelley L Forrest‎ et al.
  • The Journal of comparative neurology‎
  • 2014‎

Artemin is a member of the glial cell line-derived neurotrophic factor (GDNF) family that has been strongly implicated in development and regeneration of autonomic nerves and modulation of nociception. Whereas other members of this family (GDNF and neurturin) primarily target parasympathetic and nonpeptidergic sensory neurons, the artemin receptor (GFRα3) is expressed by sympathetic and peptidergic sensory neurons that are also the primary sites of action of nerve growth factor, a powerful modulator of bladder nerves. Many bladder sensory neurons express GFRα3 but it is not known if they represent a specific functional subclass. Therefore, our initial aim was to map the distribution of GFRα3-immunoreactive (-IR) axons in the female rat bladder, using cryostat sections and whole wall thickness preparations. We found that GFRα3-IR axons innervated the detrusor, vasculature, and urothelium, but only part of this innervation was sensory. Many noradrenergic sympathetic axons innervating the vasculature were GFRα3-IR, but the noradrenergic innervation of the detrusor was GFRα3-negative. We also identified a prominent source of nonneuronal GFRα3-IR that is likely to be glial. Further characterization of bladder nerves revealed specific structural features of chemically distinct classes of axon terminals, and a major autonomic source of axons labeled with neurofilament-200, which is commonly used to identify myelinated sensory axons within organs. Intramural neurons were also characterized and quantified. Together, these studies reveal a diverse range of potential targets by which artemin could influence bladder function, nerve regeneration, and pain, and provide a strong microanatomical framework for understanding bladder physiology and pathophysiology.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: