2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 301 papers

Generation of a NESTIN-EGFP reporter human induced pluripotent stem cell line, KSCBi005-A-1, using CRISPR/Cas9 nuclease.

  • Youngsun Lee‎ et al.
  • Stem cell research‎
  • 2019‎

NESTIN, an intermediate filament, is a neuroectodermal marker involved in induced pluripotent stem cell (iPSC) differentiation toward neural lineages. Here, we introduced an EGFP reporter into the C-terminus of NESTIN in KSCBi005-A hiPSCs through homologous recombination using CRISPR/Cas9 nuclease. The successfully edited line was confirmed by sequencing and had a normal karyotype. It expressed EGFP upon induction of neural differentiation and exhibited potential for differentiation into three germ layers. KSCBi005-A-1 cells could be used to monitor the expression of NESTIN in differentiated cell types. This cell line is available at the National Stem Cell Bank, Korea National Institute of Health.


Skeletal muscle pericyte subtypes differ in their differentiation potential.

  • Alexander Birbrair‎ et al.
  • Stem cell research‎
  • 2013‎

Neural progenitor cells have been proposed as a therapy for central nervous system disorders, including neurodegenerative diseases and trauma injuries, however their accessibility is a major limitation. We recently isolated Tuj1+ cells from skeletal muscle culture of Nestin-GFP transgenic mice however whether they form functional neurons in the brain is not yet known. Additionally, their isolation from nontransgenic species and identification of their ancestors is unknown. This gap of knowledge precludes us from studying their role as a valuable alternative to neural progenitors. Here, we identified two pericyte subtypes, type-1 and type-2, using a double transgenic Nestin-GFP/NG2-DsRed mouse and demonstrated that Nestin-GFP+/Tuj1+ cells derive from type-2 Nestin-GFP+/NG2-DsRed+/CD146+ pericytes located in the skeletal muscle interstitium. These cells are bipotential as they generate either Tuj1+ cells when cultured with muscle cells or become "classical" α-SMA+pericytes when cultured alone. In contrast, type-1 Nestin-GFP-/NG2-DsRed+/CD146+ pericytes generate α-SMA+pericytes but not Tuj1+ cells. Interestingly, type-2 pericyte derived Tuj1+ cells retain some pericytic markers (CD146+/PDGFRβ+/NG2+). Given the potential application of Nestin-GFP+/NG2-DsRed+/Tuj1+ cells for cell therapy, we found a surface marker, the nerve growth factor receptor, which is expressed exclusively in these cells and can be used to identify and isolate them from mixed cell populations in nontransgenic species for clinical purposes.


2,4-Dinitrophenol induces neural differentiation of murine embryonic stem cells.

  • Léo Freitas-Correa‎ et al.
  • Stem cell research‎
  • 2013‎

2,4-Dinitrophenol (DNP) is a neuroprotective compound previously shown to promote neuronal differentiation in a neuroblastoma cell line and neurite outgrowth in primary neurons. Here, we tested the hypothesis that DNP could induce neurogenesis in embryonic stem cells (ESCs). Murine ESCs, grown as embryoid bodies (EBs), were exposed to 20 μM DNP (or vehicle) for 4 days. Significant increases in the proportion of nestin- and β-tubulin III-positive cells were detected after EB exposure to DNP, accompanied by enhanced glial fibrillary acidic protein (GFAP), phosphorylated extracellular signal-regulated kinase (p-ERK) and ATP-linked oxygen consumption, thought to mediate DNP-induced neural differentiation. DNP further protected ESCs from cell death, as indicated by reduced caspase-3 positive cells, and increased proliferation. Cell migration from EBs was significantly higher in DNP-treated EBs, and migrating cells were positive for nestin, ß-tubulin III and MAP2, similar to that observed with retinoic acid (RA)-treated EBs. Compared to RA, however, DNP exerted a marked neuritogenic effect on differentiating ESCs, increasing the average length and number of neurites per cell. Results establish that DNP induces neural differentiation of ESCs, accompanied by cell proliferation, migration and neuritogenesis, suggesting that DNP may be a novel tool to induce neurogenesis in embryonic stem cells.


Lymphoblast-derived integration-free iPS cell line from a female 67-year-old Alzheimer's disease patient with TREM2 (R47H) missense mutation.

  • Friederike Schröter‎ et al.
  • Stem cell research‎
  • 2016‎

Human lymphoblast cells from a female patient diagnosed with Alzheimer's disease (AD) possessing the missense mutation TREM2 p.R47H were used to generate integration-free induced pluripotent stem cells (iPSCs) employing episomal plasmids expressing OCT4, SOX2, NANOG, LIN28, c-MYC and L-MYC. The iPSCs retained the TREM2 mutation, and were defined as pluripotent based on (i) expression of pluripotent-associated markers, (ii) embryoid body-based differentiation into cell types representative of the three germ layers and (iii) the similarity between the transcriptomes of the iPSC line and the human embryonic stem cell line H1 with a Pearson correlation of 0.961.


Lymphoblast-derived integration-free iPS cell line from a 65-year-old Alzheimer's disease patient expressing the TREM2 p.R47H variant.

  • Friederike Schröter‎ et al.
  • Stem cell research‎
  • 2016‎

Human lymphoblast cells from a male patient diagnosed with Alzheimer's disease (AD) expressing the TREM2 p.R47H variant were used to generate integration-free induced pluripotent stem (iPS) cells employing episomal plasmids expressing OCT4, SOX2, NANOG, LIN28, c-MYC and L-MYC. The iPS cells retained the TREM2 mutation, and were defined as pluripotent based on (i) expression of pluripotent-associated markers, (ii) embryoid body-based differentiation into cell types representative of the three germ layers and (iii) the similarity between the transcriptomes of the iPS cell line and the human embryonic stem cell line H1 with a Pearson correlation of 0.966.


Immediate expression of Cdh2 is essential for efficient neural differentiation of mouse induced pluripotent stem cells.

  • Huanxing Su‎ et al.
  • Stem cell research‎
  • 2013‎

Induced pluripotent stem cells (iPSCs) exhibit reduced efficiency and higher variability in neural differentiation compared to embryonic stem cells (ESCs). In this study, we showed that mouse iPSCs failed to efficiently give rise to neuronal cells using conventional methods previously established for driving mouse ESC differentiation. We reported a novel approach which remarkably increases neural differentiation of mouse iPSCs. This novel approach initiated embryoid body (EB) formation directly from the whole cell clones isolated from the top of feeder cells. Compared to conventional neural induction methods such as single cell suspension or monolayer culture, the cell clone-derived EB method led to a pronounced increase in directed generation of various types of neural cells including neural stem cells, motoneurons and dopaminergic neurons in response to different inducers. Through gene expression microarray analysis, we identified 14 genes that were highly expressed in the cell clone-derived EBs. Among them, we found that Cdh2, also known as N-cadherin, played important roles in controlling the neural differentiation efficiency of mouse iPSCs. Forced expression of Cdh2 in iPSCs substantially enhanced the differentiation efficiency while knocking-down of Cdh2 by shRNA blocked the neural differentiation. Our results revealed a critical role of Cdh2 in the process of efficient neural differentiation of mouse iPS cells.


Generation of human embryonic stem cell line with heterozygous RB1 deletion by CRIPSR/Cas9 nickase.

  • Jian Tu‎ et al.
  • Stem cell research‎
  • 2018‎

The Retinoblastoma 1 (RB1) tumor suppressor, a member of the Retinoblastoma gene family, functions as a pocket protein for the functional binding of E2F transcription factors. About 1/3 of retinoblastoma patients harbor a germline RB1 mutation or deletion, leading to the development of retinoblastoma. Here, we demonstrate generation of a heterozygous deletion of the RB1 gene in the H1 human embryonic stem cell line using CRISPR/Cas9 nickase genome editing. The RB1 heterozygous knockout H1 cell line shows a normal karyotype, maintains a pluripotent state, and is capable of differentiation to the three germline layers.


Generation of induced pluripotent stem cell line, NIMHi009-A, from PBMCs of an adult healthy male.

  • Gautham Arunachal‎ et al.
  • Stem cell research‎
  • 2024‎

Human induced pluripotent stem cells provide an exceptional platform for studying pathogenesis in vitro. We, therefore, have generated and characterized human induced pluripotent stem cell (iPSC) line NIMHi009-A derived from peripheral blood mononuclear cells (PBMCs) of healthy adult male control for an epileptic patient carrying voltage gated sodium channel mutation, using Sendai virus-based reprogramming. The generated iPSCs express pluripotency genes and can spontaneously differentiate into three germ layers. These cells display a normal karyotype and are free of mycoplasma. The iPSC line NIMHi009-A can be used as healthy control for modelling various diseases and screening for drugs.


CD200 -dependent and -independent immune-modulatory functions of neural stem cells.

  • Tal Arad‎ et al.
  • Stem cell research‎
  • 2021‎

Neural stem/precursor cells (NPC) exhibit powerful immune-modulatory properties. Attenuation of neuroinflammation by intra-cerebroventricular transplantation of NPC, protects from immune-mediated demyelination and axonal injury. The immune modulatory properties of NPC are mediated by a non-species-specific, multiple bystander effect, mediated by both direct cell-cell contact, and by soluble factor(s). CD200 is a cell-surface molecule, with important roles in regulating diverse immune responses, and shown also to limit neuroinflammatory processes. We hypothesized that CD200 may play a role in mediating immune-modulatory effects of NPC. We used wild type and CD200-deficient NPC to examine the role of CD200 in mediating two vital aspects of NPC -immune modulatory properties: (1) Attenuation of autoimmune neuroinflammation; and (2) Suppression of immune rejection response towards transplanted allogeneic NPC from the host CNS. We found that CD200 is dispensable for attenuating acute experimental autoimmune neuroinflammation, but is required for protecting transplanted allogeneic NPC from immune rejection by the host tissue. CD200 deficient NPC showed similar growth, differentiation and survival properties as wild type NPC. CD200-deficient NPC attenuated efficiently T cell activation and proliferation, but exhibited reduced ability to inhibit macrophages. We conclude that CD200 plays a partial role in mediating the immune-modulatory properties of NPC. The differential effect on T cells versus macrophages may underlie the observed discrepancy in their function in vivo.


Generation of induced pluripotent stem cell line NIMHi010-A from dermal fibroblast cells of a healthy individual.

  • Suravi Sasmita Dash‎ et al.
  • Stem cell research‎
  • 2024‎

In this study, we have established human induced pluripotent stem cell (hiPSC) line, NIMHi010-A of a 42-year-old healthy donor. The iPSC line was generated from human dermal fibroblasts using Sendai viruses carrying reprogramming factors c-MYC, SOX2, KLF4, and OCT4 under a feeder-free culture system. The generated hiPSC line expressed typical pluripotency markers, displayed a normal karyotype, and demonstrated the potential to differentiate into the three germ layers. This hiPSC line will serve as a healthy control model for physiological processes and drug screening of Asian origin from Indian population.


Generation and characterisation of a human induced pluripotent stem cell line, NIMHi007-A, from peripheral blood mononuclear cells derived from an adult healthy female.

  • Madhura Milind Nimonkar‎ et al.
  • Stem cell research‎
  • 2023‎

We report the generation and characterisation of a human induced pluripotent stem cell (iPSC) line, NIMHi007-A, derived from peripheral blood mononuclear cells (PBMCs) of a healthy female adult individual. PBMCs were reprogrammed using the non-integrating Sendai virus consisting of Yamanaka reprogramming factors- SOX2, cMYC, KLF4, and OCT4. The iPSCs displayed a normal karyotype, express pluripotency markers, and could generate into three germ layers, endoderm, mesoderm, and ectoderm, in-vitro. This iPSC line, NIMHi007-A, can be used as a healthy control for various in-vitro disease models and study their underlying pathophysiological mechanisms.


Inducible expression of noggin selectively expands neural progenitors in the adult SVZ.

  • M Morell‎ et al.
  • Stem cell research‎
  • 2015‎

Multipotent, self-renewing stem cells are present throughout the developing nervous system remaining in discrete regions of the adult brain. In the subventricular zone (SVZ) signaling molecules, including the bone morphogenetic proteins and their secreted inhibitor, noggin appear to play a critical role in controlling neural stem cell (NSC) behavior. To examine the function of this signaling pathway in the intact nervous system, we developed a transgenic mouse model in which noggin expression can be induced specifically in NSC via a nestin-driven reverse tetracycline-controlled transactivator (rtTA). In adult animals, the induction of noggin expression promotes the proliferation of neural progenitors in the SVZ, and shifts the differentiation of B cells (NSC) from mature astrocytes to transit amplifying C cells and oligodendrocyte precursor cells without depleting the NSC population. Noggin expression significantly increases neuronal and oligodendrocyte differentiation both in vivo and in vitro when NSCs are grown as neurospheres. These results demonstrate that noggin/BMP interactions tightly control cell fate in the SVZ.


Lymphoblast-derived integration-free iPSC lines from a female and male Alzheimer's disease patient expressing different copy numbers of a coding CNV in the Alzheimer risk gene CR1.

  • Friederike Schröter‎ et al.
  • Stem cell research‎
  • 2016‎

Human lymphoblast cells from a female and male patient diagnosed with Alzheimer's disease (AD) with different genotypes of a functional copy number variation (CNV) in the AD risk gene CR1 were used to generate integration-free induced pluripotent stem cells (iPSCs) employing episomal plasmids expressing OCT4, SOX2, NANOG, LIN28, c-MYC and L-MYC. The iPSCs retained the CR1 CNV, and comparative transcriptome analyses with the human embryonic stem cell line H1 revealed a Pearson correlation of 0.956 for AD1-CR10 and 0.908 for AD1-CR14.


Generation of an Induced pluripotent stem cell (iPSC) line (IGIBi011-A) from a Spinocerebellar ataxia type 12 gait dominant patient.

  • Sana Zahra‎ et al.
  • Stem cell research‎
  • 2024‎

The PPP2R2B gene, expressed highly in the brain, harbours trinucleotide CAG repeats in the 5'UTR region, in the range of 7-42 repeats. Individuals carrying CAG repeats greater than 43 have been associated to manifest a neurodegenerative disease condition termed as Spinocerebellar Ataxia type 12 (SCA12). An iPSC line from an adult male diagnosed with SCA12 presenting symptoms of gait (Gait Dominance) was generated. It showed pluripotency and trilineage markers without any chromosomal abnormality. This line can be utilized as an essential resource in enhancing our understanding of the molecular pathogenic mechanisms underlying SCA12 by facilitating generation of various neuronal cell types.


Controlled release of dextrin-conjugated growth factors to support growth and differentiation of neural stem cells.

  • Elaine L Ferguson‎ et al.
  • Stem cell research‎
  • 2018‎

An essential aspect of stem cell in vitro culture and in vivo therapy is achieving sustained levels of growth factors to support stem cell survival and expansion, while maintaining their multipotency and differentiation potential. This study investigated the ability of dextrin (~74,000 g/mol; 27.8 mol% succinoylation) conjugated to epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF; or FGF-2) (3.9 and 6.7% w/w protein loading, respectively) to support the expansion and differentiation of stem cells in vitro via sustained, controllable growth factor release. Supplementation of mouse neural stem cells (mNSCs) with dextrin-growth factor conjugates led to greater and prolonged proliferation compared to unbound EGF/bFGF controls, with no detectable apoptosis after 7 days of treatment. Immunocytochemical detection of neural precursor (nestin) and differentiation (Olig2, MAP2, GFAP) markers verified that controlled release of dextrin-conjugated growth factors preserves stem cell properties of mNSCs for up to 7 days. These results show the potential of dextrin-growth factor conjugates for localized delivery of bioactive therapeutic agents to support stem cell expansion and differentiation, and as an adjunct to direct neuronal repair.


EZ spheres: a stable and expandable culture system for the generation of pre-rosette multipotent stem cells from human ESCs and iPSCs.

  • Allison D Ebert‎ et al.
  • Stem cell research‎
  • 2013‎

We have developed a simple method to generate and expand multipotent, self-renewing pre-rosette neural stem cells from both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs) without utilizing embryoid body formation, manual selection techniques, or complex combinations of small molecules. Human ESC and iPSC colonies were lifted and placed in a neural stem cell medium containing high concentrations of EGF and FGF-2. Cell aggregates (termed EZ spheres) could be expanded for long periods using a chopping method that maintained cell-cell contact. Early passage EZ spheres rapidly down-regulated OCT4 and up-regulated SOX2 and nestin expression. They retained the potential to form neural rosettes and consistently differentiated into a range of central and peripheral neural lineages. Thus, they represent a very early neural stem cell with greater differentiation flexibility than other previously described methods. As such, they will be useful for the rapidly expanding field of neurological development and disease modeling, high-content screening, and regenerative therapies based on pluripotent stem cell technology.


Generation and characterization of an endogenously tagged SPG11-human iPSC line by CRISPR/Cas9 mediated knock-in.

  • Laura Krumm‎ et al.
  • Stem cell research‎
  • 2021‎

Pathogenic bi-allelic variants in the SPG11 gene result in rare motor neuron disorders such as Hereditary Spastic Paraplegia type 11, Charcot-Marie Tooth, and Juvenile Amyotrophic Lateral Sclerosis-5. The main challenge in SPG11-linked disease research is the lack of antibodies against SPG11 encoded spatacsin. Here, we describe the CRISPR/Cas9 mediated generation and validation of an endogenously tagged SPG11- human iPSC line that contains an HA tag at the C-terminus of SPG11. The line exhibits multi-lineage differentiation potential and holds promise for studying the role of spatacsin and for the elucidation of SPG11-associated pathogenesis. Resource Table.


Establishment and characterization of induced pluripotent stem cells from placental mesenchymal stromal cells.

  • Shagufta Parveen‎
  • Stem cell research‎
  • 2018‎

Human term placenta is a bulky organ which harbours abundant mesenchymal stromal cells. This study reports isolation and characterization of placental mesenchymal stromal cells (PMSCs) followed by reprogramming of PMSCs to induced pluripotent stem cells (iPSCs). The placental human iPSC (PhiPSC) line is pluripotent with high telomerase activity, genetically identical to parental PMSCs, transgene free, karyotypically normal and differentiates into ectoderm, mesoderm and endoderm both in vitro and in vivo. Thus PMSCs serve as a unique cell type for human perinatal iPSC derivation from extra embryonic tissue.


Generation of a human induced pluripotent stem cell line (SIAISi010-A) from a 31-year-old healthy donor with Chinese Han genetic background.

  • Qiuting Dai‎ et al.
  • Stem cell research‎
  • 2021‎

A healthy 31-year-old Chinese Han female donated peripheral blood mononuclear cells (PBMC). Her PBMCs were reprogrammed with human OKSM (OCT3/4, KLF4 SOX2, and c-MYC) transcription factors by the non-integrating episomal vector system. Immunocytochemistry for pluripotency markers confirmed the pluripotency of transgene-free iPSCs. Their ability to differentiate spontaneously three germ layers in vitro is also confirmed. The iPSC line displayed a normal karyotype. This model can be used as a control in pathological mechanism studies.


ATF3 is a novel nuclear marker for migrating ependymal stem cells in the rat spinal cord.

  • Miranda Mladinic‎ et al.
  • Stem cell research‎
  • 2014‎

The present study identified ATF3 as a novel dynamic marker for ependymal stem/progenitor cells (nestin, vimentin and SOX2 positive) around the central canal of the neonatal or adult rat spinal cord. While quiescent ependymal cells showed cytoplasmic ATF3 expression, during 6-24h in vitro these cells mobilized and acquired intense nuclear ATF3 staining. Their migratory pattern followed a centrifugal pathway toward the dorsal and ventral funiculi, reminiscent of the rostral migratory stream of the brain subventricular stem cells. Thus, the chain cell formation was, by analogy, termed funicular migratory stream (FMS). The FMS process preceded the strong proliferation of ependymal cells occurring only after 24h in vitro. Pharmacological inhibition of MAPK-p38 and JNK/c-Jun (upstream effectors of ATF3 activation) prevented the FMS mobilization of ATF3 nuclear-positive cells. Excitotoxicity or ischemia-like conditions, reported to evoke neuronal and glial injury, did not further enhance migration of ependymal cells at 24h, suggesting that, at this early stage of damage, the FMS phenomenon had peaked and that more extensive repair processes are delayed beyond this time point. ATF3 is, therefore, useful to identify activation and migration of endogenous stem cells of the rat spinal cord in vitro.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: