Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Lymphoblast-derived integration-free iPS cell line from a female 67-year-old Alzheimer's disease patient with TREM2 (R47H) missense mutation.

  • Friederike Schröter‎ et al.
  • Stem cell research‎
  • 2016‎

Human lymphoblast cells from a female patient diagnosed with Alzheimer's disease (AD) possessing the missense mutation TREM2 p.R47H were used to generate integration-free induced pluripotent stem cells (iPSCs) employing episomal plasmids expressing OCT4, SOX2, NANOG, LIN28, c-MYC and L-MYC. The iPSCs retained the TREM2 mutation, and were defined as pluripotent based on (i) expression of pluripotent-associated markers, (ii) embryoid body-based differentiation into cell types representative of the three germ layers and (iii) the similarity between the transcriptomes of the iPSC line and the human embryonic stem cell line H1 with a Pearson correlation of 0.961.


Lymphoblast-derived integration-free iPS cell line from a 65-year-old Alzheimer's disease patient expressing the TREM2 p.R47H variant.

  • Friederike Schröter‎ et al.
  • Stem cell research‎
  • 2016‎

Human lymphoblast cells from a male patient diagnosed with Alzheimer's disease (AD) expressing the TREM2 p.R47H variant were used to generate integration-free induced pluripotent stem (iPS) cells employing episomal plasmids expressing OCT4, SOX2, NANOG, LIN28, c-MYC and L-MYC. The iPS cells retained the TREM2 mutation, and were defined as pluripotent based on (i) expression of pluripotent-associated markers, (ii) embryoid body-based differentiation into cell types representative of the three germ layers and (iii) the similarity between the transcriptomes of the iPS cell line and the human embryonic stem cell line H1 with a Pearson correlation of 0.966.


Lymphoblast-derived integration-free iPSC lines from a female and male Alzheimer's disease patient expressing different copy numbers of a coding CNV in the Alzheimer risk gene CR1.

  • Friederike Schröter‎ et al.
  • Stem cell research‎
  • 2016‎

Human lymphoblast cells from a female and male patient diagnosed with Alzheimer's disease (AD) with different genotypes of a functional copy number variation (CNV) in the AD risk gene CR1 were used to generate integration-free induced pluripotent stem cells (iPSCs) employing episomal plasmids expressing OCT4, SOX2, NANOG, LIN28, c-MYC and L-MYC. The iPSCs retained the CR1 CNV, and comparative transcriptome analyses with the human embryonic stem cell line H1 revealed a Pearson correlation of 0.956 for AD1-CR10 and 0.908 for AD1-CR14.


Generation of a Crigler-Najjar Syndrome Type I patient-derived induced pluripotent stem cell line CNS705 (HHUUKDi005-A).

  • Nina Graffmann‎ et al.
  • Stem cell research‎
  • 2021‎

Human fibroblasts cells from a Crigler-Najjar Syndrome (CNS) patient were used to generate integration-free induced pluripotent stem cells (iPSCs) by over-expressing episomal-based plasmids expressing OCT4, SOX2, NANOG, KLF4, c-MYC and LIN28. The derived CNS705-iPSC line is homozygous for the UGT1A1 c.877_890delTACATTAATGCTTCinsA mutation. Pluripotency was confirmed by the expression of associated markers and embryoid body-based differentiation into cell types from all three germ layers. Comparative transcriptome analysis of the iPSC and the human embryonic stem cell line H9 revealed a Pearson's correlation of 0.9468.


Fibroblast-derived integration-free iPSC line ISRM-NBS1 from an 18-year-old Nijmegen Breakage Syndrome patient carrying the homozygous NBN c.657_661del5 mutation.

  • Soraia Martins‎ et al.
  • Stem cell research‎
  • 2019‎

Human fibroblasts cells from a female diagnosed with Nijmegen Breakage Syndrome (NBS) carrying the homozygous NBN c.657_661del5 mutation were used to generate integration-free induced pluripotent stem cells (iPSCs) by over-expressing episomal-based plasmids harbouring OCT4, SOX2, NANOG, KLF4, c-MYC and LIN28. The derived iPSC line - ISRM-NBS1 was defined as pluripotent based on (i) expression of pluripotency-associated markers (ii) embryoid body-based differentiation into cell types representative of the three germ layers and (iii) the similarity between the transcriptome of the iPSC line and the human embryonic stem cell line H1 with a Pearson correlation of 0.955.


Establishment and characterization of an iPSC line from a 35 years old high grade patient with nonalcoholic fatty liver disease (30-40% steatosis) with homozygous wildtype PNPLA3 genotype.

  • Nina Graffmann‎ et al.
  • Stem cell research‎
  • 2018‎

Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome and its prevalence increases continuously. Here, we reprogrammed fibroblasts of a high grade NAFLD patient with homozygous wildtype PNPLA3 genotype. The induced pluripotent stem cells (iPSCs) were characterized by immunocytochemistry, flow cytometry, embryoid body formation, pluritest, DNA-fingerprinting and karyotype analysis.


Establishment and characterization of an iPSC line from a 58 years old high grade patient with nonalcoholic fatty liver disease (70% steatosis) with homozygous wildtype PNPLA3 genotype.

  • Nina Graffmann‎ et al.
  • Stem cell research‎
  • 2018‎

Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome and its prevalence increases continuously. Here, we reprogrammed fibroblasts of a high grade NAFLD patient with homozygous wildtype PNPLA3 genotype. We characterized the induced pluripotent stem cells (iPSCs) by immunocytochemistry, flow cytometry, embryoid body formation, pluritest DNA-fingerprinting, and karyotype analysis.


Lymphoblast-derived integration-free iPSC line AD-TREM2-1 from a 67year-old Alzheimer's disease patient expressing the TREM2 p.R47H variant.

  • Soraia Martins‎ et al.
  • Stem cell research‎
  • 2018‎

Human lymphoblast cells from a male diagnosed with Alzheimer's disease (AD) expressing the TREM2 p.R47H variant were used to generate integration-free induced pluripotent stem cells (iPSCs) by over-expressing episomal-based plasmids harbouring OCT4, SOX2, NANOG, LIN28, c-MYC and L-MYC. AD-TREM2-1 was defined as pluripotent based on (i) expression of pluripotency-associated markers (ii) embryoid body-based differentiation into cell types representative of the three germ layers and (iii) the similarity between the transcriptome of the iPSC line and the human embryonic stem cell line H1 with a Pearson correlation of 0.947.


Derivation and characterization of integration-free iPSC line ISRM-UM51 derived from SIX2-positive renal cells isolated from urine of an African male expressing the CYP2D6 *4/*17 variant which confers intermediate drug metabolizing activity.

  • Martina Bohndorf‎ et al.
  • Stem cell research‎
  • 2017‎

SIX2-positive renal cells isolated from urine from a 51year old male of African origin bearing the CYP2D6 *4/*17 variant were reprogrammed by nucleofection of a combination of two episomal-based plasmids omitting pathway (TGFβ, MEK and GSK3β) inhibition. The induced pluripotent stem cells (iPSCs) were characterized by immunocytochemistry, embryoid body formation, DNA-fingerprinting and karyotype analysis. Comparative transcriptome analyses with human embryonic stem cell lines H1 and H9 revealed a Pearson correlation of 0.9243 and 0.9619 respectively.


Lymphoblast-derived integration-free ISRM-CON9 iPS cell line from a 75year old female.

  • Soraia Martins‎ et al.
  • Stem cell research‎
  • 2018‎

Human lymphoblast cells were used to generate integration-free induced pluripotent stem cells (iPSCs) employing episomal-based plasmids expressing OCT4, SOX2, NANOG, LIN28, c-MYC and L-MYC. The derived iPSCs were defined as pluripotent based on (i) expression of pluripotency-associated markers, (ii) embryoid body-based differentiation into cell types representative of the three germ layers and (iii) the similarity between the transcriptomes of the iPSC line and the human embryonic stem cell line H1 with a Pearson correlation of 0.95.


Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks.

  • Amir M Hossini‎ et al.
  • BMC genomics‎
  • 2015‎

Alzheimer's disease (AD) is a complex, irreversible neurodegenerative disorder. At present there are neither reliable markers to diagnose AD at an early stage nor therapy. To investigate underlying disease mechanisms, induced pluripotent stem cells (iPSCs) allow the generation of patient-derived neuronal cells in a dish.


Mitochondrial-associated cell death mechanisms are reset to an embryonic-like state in aged donor-derived iPS cells harboring chromosomal aberrations.

  • Alessandro Prigione‎ et al.
  • PloS one‎
  • 2011‎

Somatic cells reprogrammed into induced pluripotent stem cells (iPSCs) acquire features of human embryonic stem cells (hESCs) and thus represent a promising source for cellular therapy of debilitating diseases, such as age-related disorders. However, reprogrammed cell lines have been found to harbor various genomic alterations. In addition, we recently discovered that the mitochondrial DNA of human fibroblasts also undergoes random mutational events upon reprogramming. Aged somatic cells might possess high susceptibility to nuclear and mitochondrial genome instability. Hence, concerns over the oncogenic potential of reprogrammed cells due to the lack of genomic integrity may hinder the applicability of iPSC-based therapies for age-associated conditions. Here, we investigated whether aged reprogrammed cells harboring chromosomal abnormalities show resistance to apoptotic cell death or mitochondrial-associated oxidative stress, both hallmarks of cancer transformation. Four iPSC lines were generated from dermal fibroblasts derived from an 84-year-old woman, representing the oldest human donor so far reprogrammed to pluripotency. Despite the presence of karyotype aberrations, all aged-iPSCs were able to differentiate into neurons, re-establish telomerase activity, and reconfigure mitochondrial ultra-structure and functionality to a hESC-like state. Importantly, aged-iPSCs exhibited high sensitivity to drug-induced apoptosis and low levels of oxidative stress and DNA damage, in a similar fashion as iPSCs derived from young donors and hESCs. Thus, the occurrence of chromosomal abnormalities within aged reprogrammed cells might not be sufficient to over-ride the cellular surveillance machinery and induce malignant transformation through the alteration of mitochondrial-associated cell death. Taken together, we unveiled that cellular reprogramming is capable of reversing aging-related features in somatic cells from a very old subject, despite the presence of genomic alterations. Nevertheless, we believe it will be essential to develop reprogramming protocols capable of safeguarding the integrity of the genome of aged somatic cells, before employing iPSC-based therapy for age-associated disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: