Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Adaptation of NS cells growth and differentiation to high-throughput screening-compatible plates.

  • Alessia Garavaglia‎ et al.
  • BMC neuroscience‎
  • 2010‎

There is an urgent need of neuronal cell models to be applied to high-throughput screening settings while recapitulating physiological and/or pathological events occurring in the Central Nervous System (CNS). Stem cells offer a great opportunity in this direction since their self renewal capacity allows for large scale expansion. Protocols for directed differentiation also promise to generate populations of biochemically homogenous neuronal progenies. NS (Neural Stem) cells are a novel population of stem cells that undergo symmetric cell division in monolayer and chemically defined media, while remaining highly neurogenic.


EZ spheres: a stable and expandable culture system for the generation of pre-rosette multipotent stem cells from human ESCs and iPSCs.

  • Allison D Ebert‎ et al.
  • Stem cell research‎
  • 2013‎

We have developed a simple method to generate and expand multipotent, self-renewing pre-rosette neural stem cells from both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs) without utilizing embryoid body formation, manual selection techniques, or complex combinations of small molecules. Human ESC and iPSC colonies were lifted and placed in a neural stem cell medium containing high concentrations of EGF and FGF-2. Cell aggregates (termed EZ spheres) could be expanded for long periods using a chopping method that maintained cell-cell contact. Early passage EZ spheres rapidly down-regulated OCT4 and up-regulated SOX2 and nestin expression. They retained the potential to form neural rosettes and consistently differentiated into a range of central and peripheral neural lineages. Thus, they represent a very early neural stem cell with greater differentiation flexibility than other previously described methods. As such, they will be useful for the rapidly expanding field of neurological development and disease modeling, high-content screening, and regenerative therapies based on pluripotent stem cell technology.


Niche-independent symmetrical self-renewal of a mammalian tissue stem cell.

  • Luciano Conti‎ et al.
  • PLoS biology‎
  • 2005‎

Pluripotent mouse embryonic stem (ES) cells multiply in simple monoculture by symmetrical divisions. In vivo, however, stem cells are generally thought to depend on specialised cellular microenvironments and to undergo predominantly asymmetric divisions. Ex vivo expansion of pure populations of tissue stem cells has proven elusive. Neural progenitor cells are propagated in combination with differentiating progeny in floating clusters called neurospheres. The proportion of stem cells in neurospheres is low, however, and they cannot be directly observed or interrogated. Here we demonstrate that the complex neurosphere environment is dispensable for stem cell maintenance, and that the combination of fibroblast growth factor 2 (FGF-2) and epidermal growth factor (EGF) is sufficient for derivation and continuous expansion by symmetrical division of pure cultures of neural stem (NS) cells. NS cells were derived first from mouse ES cells. Neural lineage induction was followed by growth factor addition in basal culture media. In the presence of only EGF and FGF-2, resulting NS cells proliferate continuously, are diploid, and clonogenic. After prolonged expansion, they remain able to differentiate efficiently into neurons and astrocytes in vitro and upon transplantation into the adult brain. Colonies generated from single NS cells all produce neurons upon growth factor withdrawal. NS cells uniformly express morphological, cell biological, and molecular features of radial glia, developmental precursors of neurons and glia. Consistent with this profile, adherent NS cell lines can readily be established from foetal mouse brain. Similar NS cells can be generated from human ES cells and human foetal brain. The extrinsic factors EGF plus FGF-2 are sufficient to sustain pure symmetrical self-renewing divisions of NS cells. The resultant cultures constitute the first known example of tissue-specific stem cells that can be propagated without accompanying differentiation. These homogenous cultures will enable delineation of molecular mechanisms that define a tissue-specific stem cell and allow direct comparison with pluripotent ES cells.


Lack of huntingtin promotes neural stem cells differentiation into glial cells while neurons expressing huntingtin with expanded polyglutamine tracts undergo cell death.

  • Paola Conforti‎ et al.
  • Neurobiology of disease‎
  • 2013‎

Huntington's disease (HD) is a neurodegenerative disorder that affects muscle coordination and diminishes cognitive abilities. The genetic basis of the disease is an expansion of CAG repeats in the Huntingtin (Htt) gene. Here we aimed to generate a series of mouse neural stem (NS) cell lines that carried varying numbers of CAG repeats in the mouse Htt gene (Hdh CAG knock-in NS cells) or that had Hdh null alleles (Hdh knock-out NS cells). Towards this end, Hdh CAG knock-in mouse ES cell lines that carried an Htt gene with 20, 50, 111, or 140 CAG repeats or that were Htt null were neuralized and converted into self-renewing NS cells. The resulting NS cell lines were immunopositive for the neural stem cell markers NESTIN, SOX2, and BLBP and had similar proliferative rates and cell cycle distributions. After 14 days in vitro, wild-type NS cells gave rise to cultures composed of 70% MAP2(+) neurons and 30% GFAP(+) astrocytes. In contrast, NS cells with expanded CAG repeats underwent neuronal cell death, with only 38%±15% of the MAP2(+) cells remaining at the end of the differentiation period. Cell death was verified by increased caspase 3/7 activity on day 14 of the neuronal differentiation protocol. Interestingly, Hdh knock-out NS cells treated using the same neuronal differentiation protocol showed a dramatic increase in the number of GFAP(+) cells on day 14 (61%±20% versus 24%±10% in controls), and a massive decrease of MAP2(+) neurons (30%±11% versus 64%±17% in controls). Both Hdh CAG knock-in NS cells and Hdh knock-out NS cells showed reduced levels of Bdnf mRNA during neuronal differentiation, in agreement with data obtained previously in HD mouse models and in post-mortem brain samples from HD patients. We concluded that Hdh CAG knock-in and Hdh knock-out NS cells have potential as tools for investigating the roles of normal and mutant HTT in differentiated neurons and glial cells of the brain.


DNAJB6, a Key Factor in Neuronal Sensitivity to Amyloidogenesis.

  • Arun Thiruvalluvan‎ et al.
  • Molecular cell‎
  • 2020‎

CAG-repeat expansions in at least eight different genes cause neurodegeneration. The length of the extended polyglutamine stretches in the corresponding proteins is proportionally related to their aggregation propensity. Although these proteins are ubiquitously expressed, they predominantly cause toxicity to neurons. To understand this neuronal hypersensitivity, we generated induced pluripotent stem cell (iPSC) lines of spinocerebellar ataxia type 3 and Huntington's disease patients. iPSC generation and neuronal differentiation are unaffected by polyglutamine proteins and show no spontaneous aggregate formation. However, upon glutamate treatment, aggregates form in neurons but not in patient-derived neural progenitors. During differentiation, the chaperone network is drastically rewired, including loss of expression of the anti-amyloidogenic chaperone DNAJB6. Upregulation of DNAJB6 in neurons antagonizes glutamate-induced aggregation, while knockdown of DNAJB6 in progenitors results in spontaneous polyglutamine aggregation. Loss of DNAJB6 expression upon differentiation is confirmed in vivo, explaining why stem cells are intrinsically protected against amyloidogenesis and protein aggregates are dominantly present in neurons.


Microcephaly-associated protein WDR62 shuttles from the Golgi apparatus to the spindle poles in human neural progenitors.

  • Claudia Dell'Amico‎ et al.
  • eLife‎
  • 2023‎

WDR62 is a spindle pole-associated scaffold protein with pleiotropic functions. Recessive mutations in WDR62 cause structural brain abnormalities and account for the second most common cause of autosomal recessive primary microcephaly (MCPH), indicating WDR62 as a critical hub for human brain development. Here, we investigated WDR62 function in corticogenesis through the analysis of a C-terminal truncating mutation (D955AfsX112). Using induced Pluripotent Stem Cells (iPSCs) obtained from a patient and his unaffected parent, as well as isogenic corrected lines, we generated 2D and 3D models of human neurodevelopment, including neuroepithelial stem cells, cerebro-cortical progenitors, terminally differentiated neurons, and cerebral organoids. We report that WDR62 localizes to the Golgi apparatus during interphase in cultured cells and human fetal brain tissue, and translocates to the mitotic spindle poles in a microtubule-dependent manner. Moreover, we demonstrate that WDR62 dysfunction impairs mitotic progression and results in alterations of the neurogenic trajectories of iPSC neuroderivatives. In summary, impairment of WDR62 localization and function results in severe neurodevelopmental abnormalities, thus delineating new mechanisms in the etiology of MCPH.


REST controls self-renewal and tumorigenic competence of human glioblastoma cells.

  • Luciano Conti‎ et al.
  • PloS one‎
  • 2012‎

The Repressor Element 1 Silencing Transcription factor (REST/NRSF) is a master repressor of neuronal programs in non-neuronal lineages shown to function as a central regulator of developmental programs and stem cell physiology. Aberrant REST function has been associated with a number of pathological conditions. In cancer biology, REST has been shown to play a tumor suppressor activity in epithelial cancers but an oncogenic role in brain childhood malignancies such as neuroblastoma and medulloblastoma. Here we examined REST expression in human glioblastoma multiforme (GBM) specimens and its role in GBM cells carrying self-renewal and tumorigenic competence. We found REST to be expressed in GBM specimens, its presence being particularly enriched in tumor cells in the perivascular compartment. Significantly, REST is highly expressed in self-renewing tumorigenic-competent GBM cells and its knock down strongly reduces their self-renewal in vitro and tumor-initiating capacity in vivo and affects levels of miR-124 and its downstream targets. These results indicate that REST contributes to GBM maintenance by affecting its self-renewing and tumorigenic cellular component and that, hence, a better understanding of these circuitries in these cells might lead to new exploitable therapeutic targets.


The evolutionary history of the polyQ tract in huntingtin sheds light on its functional pro-neural activities.

  • Raffaele Iennaco‎ et al.
  • Cell death and differentiation‎
  • 2022‎

Huntington's disease is caused by a pathologically long (>35) CAG repeat located in the first exon of the Huntingtin gene (HTT). While pathologically expanded CAG repeats are the focus of extensive investigations, non-pathogenic CAG tracts in protein-coding genes are less well characterized. Here, we investigated the function and evolution of the physiological CAG tract in the HTT gene. We show that the poly-glutamine (polyQ) tract encoded by CAGs in the huntingtin protein (HTT) is under purifying selection and subjected to stronger selective pressures than CAG-encoded polyQ tracts in other proteins. For natural selection to operate, the polyQ must perform a function. By combining genome-edited mouse embryonic stem cells and cell assays, we show that small variations in HTT polyQ lengths significantly correlate with cells' neurogenic potential and with changes in the gene transcription network governing neuronal function. We conclude that during evolution natural selection promotes the conservation and purity of the CAG-encoded polyQ tract and that small increases in its physiological length influence neural functions of HTT. We propose that these changes in HTT polyQ length contribute to evolutionary fitness including potentially to the development of a more complex nervous system.


Genome-Wide Definition of Promoter and Enhancer Usage during Neural Induction of Human Embryonic Stem Cells.

  • Valentina Poletti‎ et al.
  • PloS one‎
  • 2015‎

Genome-wide mapping of transcriptional regulatory elements is an essential tool for understanding the molecular events orchestrating self-renewal, commitment and differentiation of stem cells. We combined high-throughput identification of transcription start sites with genome-wide profiling of histones modifications to map active promoters and enhancers in embryonic stem cells (ESCs) induced to neuroepithelial-like stem cells (NESCs). Our analysis showed that most promoters are active in both cell types while approximately half of the enhancers are cell-specific and account for most of the epigenetic changes occurring during neural induction, and most likely for the modulation of the promoters to generate cell-specific gene expression programs. Interestingly, the majority of the promoters activated or up-regulated during neural induction have a "bivalent" histone modification signature in ESCs, suggesting that developmentally-regulated promoters are already poised for transcription in ESCs, which are apparently pre-committed to neuroectodermal differentiation. Overall, our study provides a collection of differentially used enhancers, promoters, transcription starts sites, protein-coding and non-coding RNAs in human ESCs and ESC-derived NESCs, and a broad, genome-wide description of promoter and enhancer usage and of gene expression programs characterizing the transition from a pluripotent to a neural-restricted cell fate.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: