2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Presynaptic release-regulating NMDA receptors in isolated nerve terminals: A narrative review.

  • Anna Pittaluga‎
  • British journal of pharmacology‎
  • 2021‎

The existence of presynaptic, release-regulating NMDA receptors in the CNS has been long matter of discussion. Most of the reviews dedicated to support this conclusion have preferentially focussed on the results from electrophysiological studies, paying little or no attention to the data obtained with purified synaptosomes, even though this experimental approach has been recognized as providing reliable information concerning the presence and the role of presynaptic release-regulating receptors in the CNS. To fill the gap, this review is dedicated to summarising the results from studies with synaptosomes published during the last 40 years, which support the existence of auto and hetero NMDA receptors controlling the release of transmitters such as glutamate, GABA, dopamine, noradrenaline, 5-HT, acetylcholine and peptides, in the CNS of mammals. The review also deals with the results from immunochemical studies in isolated nerve endings that confirm the functional observations.


Modulation of the myogenic response by neurogenic influences in rat small arteries.

  • Stephanie Anschütz‎ et al.
  • British journal of pharmacology‎
  • 2005‎

The hypothesis that the amplitude of the myogenic response is modulated by factors released from nerve endings was tested in rat tail small arteries. A pressure myograph in conjunction with direct stimulation of nerve endings by electrical field stimulation (EFS) was used to determine rat small artery contractile reactions. Vessel pretreatment with 10(- 5) M phentolamine abolished EFS-induced reactions completely indicating that they are mediated mainly by an adrenoceptor agonist, probably noradrenaline. In the absence and presence of 10(- 5) M phentolamine, vessel diameter changes in the pressure range from 10 to 120 mmHg were not different. Vessel stimulation by (i) EFS, (ii) noradrenaline, (iii) selective stimulation of alpha1- and alpha2-receptors, (iv) serotonin, or (v) vasopressin significantly reduced the diameter change induced by stepping pressure from 10 to 40 mmHg compared to unstimulated, control vessels. Vessel diameter changes induced by stepping pressure from 40 to 80 and from 80 to 120 mmHg, however, were not different in vessels stimulated with EFS and noradrenaline compared to controls. In conclusion, these data show that factors released from unstimulated adrenergic nerve endings (i.e., not stimulated by EFS) are not involved in the myogenic response. In contrast, factors released upon stimulation of nerve endings can modulate the amplitude of the myogenic response, but only at low pressures. Thus, the pressure range for myogenic blood flow autoregulation is extended to lower pressures. Myogenic autoregulation of blood flow at physiological pressures is unaltered.


The phosphatidylinositol 4-kinase inhibitor phenylarsine oxide blocks evoked neurotransmitter release by reducing calcium entry through N-type calcium channels.

  • T J Searl‎ et al.
  • British journal of pharmacology‎
  • 2000‎

The effects of the phosphatidylinositol 4-kinase inhibitor, phenylarsine oxide (PAO), on acetylcholine (ACh) release and on prejunctional Ca(2+) currents were studied at the frog neuromuscular junction using electrophysiological recording techniques. Application of PAO (30 microM) increased both spontaneous ACh release reflected as miniature end-plate potential (mepp) frequencies and evoked ACh release reflected as end-plate potential (epp) amplitudes with a similar time course. Following the initial increase in epp amplitudes produced by PAO, epps slowly declined and were eventually abolished after approximately 20 min. However, mepp frequencies remained elevated over this time period. PAO (30 microM) also inhibited the perineural voltage change associated with Ca(2+) currents through N-type Ca(2+) channels (prejunctional Ca(2+) currents) at motor nerve endings. Addition of British anti-lewisite (BAL, 1 mM), an inactivator of PAO, partially reversed both the inhibition of epps and the inhibition of the prejunctional Ca(2+) current. The effects of PAO on N-type Ca(2+) channels were investigated more directly using the whole cell patch clamp technique on acutely dissociated sympathetic neurons. Application of PAO (30 - 40 microM) to these neurons decreased the voltage-activated calcium currents through N-type Ca(2+) channels, an effect that was partially reversible by BAL. In combination, these results suggest that inhibition of neurotransmitter release by PAO occurs as a consequence of the inhibition of Ca(2+) entry via N-type calcium channels. The relationship between the effects of PAO on N-type Ca(2+) channels in motor nerve endings and in neuronal soma is discussed.


Lipopolysaccharide enhances neurogenic plasma exudation in guinea-pig airways.

  • H P Kuo‎ et al.
  • British journal of pharmacology‎
  • 1998‎

1. Lipopolysaccharide (LPS) is implicated in many pulmonary and airway inflammatory diseases. Tachykinins released from nerve endings increase vascular permeability. In this study, we have assessed the enhancement by LPS of tachykinin-mediated plasma exudation in guinea-pig airways, and examined the role of oxidants as well as leukocyte adherence. 2. LPS (100 microg kg(-1), i.v.) was administered 0-3 h before bilateral electrical stimulation of the cervical vagus nerves in animals anaesthetized with urethane and ventilated. Vagal stimulation increased vascular permeability in the airways. LPS enhanced the vagally-mediated plasma exudation with the peak effect at 1 h after LPS administration. LPS alone induced no significant plasma exudation. LPS also enhanced exogenous substance P (10(-8) mol kg(-1), i.v.)-induced plasma exudation. 3. The NK-1 receptor antagonist L-732,138 abolished vagally-induced plasma exudation and significantly inhibited the enhancement by LPS. Pretreatment with superoxide dismutase (SOD, 5000 U kg(-1), i.p.) did not affect the vagally-induced plasma exudation, but inhibited the LPS-enhanced neurogenic plasma leakage. The LPS-enhanced vagally-induced plasma exudation was not completely inhibited by either L-732,138 or SOD pretreatment alone, but was blocked by the combination of both pretreatments. 4. Neutrophil depletion by cyclophosphamide alone did not influence vagally-induced plasma exudation, but significantly inhibited the LPS-enhanced response. 5. In conclusion, we have demonstrated LPS enhanced neurogenic plasma exudation by augmenting the response to tachykinins, partly through NK-1 receptors, to directly increase vascular permeability or to enhance leukocyte adhesion-mediated endothelial cell injury. Tachykinins released from nerve endings may contribute to endotoxin-related airway inflammatory responses.


Acetylcholine sensitivity of biphasic Ca2+ mobilization induced by nicotinic receptor activation at the mouse skeletal muscle endplate.

  • K Dezaki‎ et al.
  • British journal of pharmacology‎
  • 1998‎

1. Acetylcholine (ACh) was locally applied onto the endplate region in a mouse phrenic nerve-diaphragm muscle preparation to measure intracellular free calcium ([Ca2+]i) entry through nicotinic ACh receptors (AChRs) by use of Ca2+-aequorin luminescence. 2. ACh (0.1-3 mM, 20 microl) elicited biphasic elevation of [Ca2+]i (fast and slow Ca2+ mobilization) in muscle cells. The peak amplitude of the slow Ca2+ mobilization (not accompanied by twitch tension) was concentration-dependently increased by ACh, whereas that of the fast component (accompanied by twitch tension) reached a maximum response at a lower concentration (0.1 mM) of applied ACh. 3. A pulse of nicotinic agonists, (-)-nicotine (10 mM) and 1,1-dimethyl-4-phenyl-piperazinium (10 mM), but not a muscarinic agonist pilocarpine (10 mM), also elicited a biphasic Ca2+ signal. 4. Even though ACh release from motor nerve endings was blocked by botulinum toxin (5 microg, bolus i.p. before isolation of the tissue), the generation of both a fast and slow Ca2+ component caused by ACh application was observed. 5. These results strongly suggest that ACh locally applied onto the endplate region of skeletal muscle induces a slow Ca2+ signal reflecting Ca2+ entry through a postsynaptic nicotinic AChR, which has a low sensitivity to transmitter ACh.


Local neurogenic regulation of rat hindlimb circulation: role of calcitonin gene-related peptide in vasodilatation after skeletal muscle contraction.

  • M Yamada‎ et al.
  • British journal of pharmacology‎
  • 1997‎

1. The mechanism of neurogenic regulation of skeletal muscle circulation was studied in the hindlimb of anaesthetized rats in vivo. Regional blood flow (RBF) of the hindlimb was recorded with a pulsed Doppler flow probe positioned in the iliac artery. 2. A short period (1 min) of sciatic nerve stimulation at 10 Hz caused a sustained increase in RBF (from 2.0 +/- 0.2 to 3.7 +/- 0.2 kHz at the peak), but no appreciable change in either MBP or HR, suggesting that the nerve stimulation produced local vasodilatation of the peripheral vasculature. The hyperaemic response reached a peak within 15 s and characteristically remained above the basal level for more than 5 min after the cessation of nerve stimulation. The response was regarded as a secondary response brought about by the contraction of skeletal muscles since (+)-tubocurarine (0.73 micromol kg(-1), i.a.) almost abolished it. 3. Lignocaine (43 micromol kg(-1), i.a.) and capsaicin (0.33 micromol kg(-1), i.a.) significantly suppressed the hyperaemic response to skeletal muscle contraction, suggesting that capsaicin-sensitive sensory nerves contribute to the hyperaemia. In contrast, an inhibitor of NO synthase, N(omega)-nitro-L-arginine methyl ester (1 micromol kg(-1) min(-1), i.v.), did not affect the hyperaemic response. 4. Serum levels of calcitonin gene-related peptide (CGRP) in iliac venous effluent significantly increased from 51 +/- 4 to 77 +/- 5 fmol ml(-1) during the hyperaemic response to skeletal muscle contraction. A bolus injection of CGRP (300 pmol kg(-1), i.a.) induced a long-lasting increase in RBF of the hindlimb. Moreover, CGRP(8-37) (100 nmol kg(-1) min(-1), i.v.), a specific CGRP1 receptor antagonist, significantly suppressed the hyperaemic response, especially the sustained phase of the response which was almost abolished by this antagonist. 5. These results suggest that CGRP, which is released from peripheral endings of capsaicin-sensitive sensory nerves, partly mediates the hyperaemia evoked by skeletal muscle contraction of the rat hindlimb.


In vivo demonstration of H3-histaminergic inhibition of cardiac sympathetic stimulation by R-alpha-methyl-histamine and its prodrug BP 2.94 in the dog.

  • C Mazenot‎ et al.
  • British journal of pharmacology‎
  • 1999‎

1. The aim of this study was to investigate whether histamine H3-receptor agonists could inhibit the effects of cardiac sympathetic nerve stimulation in the dog. 2. Catecholamine release by the heart and the associated variation of haemodynamic parameters were measured after electrical stimulation of the right cardiac sympathetic nerves (1-4 Hz, 10 V, 10 ms) in the anaesthetized dog treated with R-alpha-methyl-histamine (R-HA) and its prodrug BP 2.94 (BP). 3. Cardiac sympathetic stimulation induced a noradrenaline release into the coronary sinus along with a tachycardia and an increase in left ventricular pressure and contractility without changes in mean arterial pressure. Intravenous administration of H3-receptor agonists significantly decreased noradrenaline release by the heart (R-HA at 2 micromol kg(-1) h(-1): +77 +/- 25 vs +405 +/- 82; BP 2.94 at 1 mg kg(-1): +12 +/- 11 vs +330 +/- 100 pg ml(-1) in control conditions, P < or = 0.05), and increases in heart rate (R-HA at 2 micromol kg(-1) h(-1): +26 +/- 8 vs +65 +/- 10 and BP 2.94 at 1 mg kg(-1): +30 +/- 8 vs 75 +/- 6 beats min(-1), in control conditions P < or = 0.05), left ventricular pressure, and contractility. Treatment with SC 359 (1 mg kg(-1)) a selective H3-antagonist, reversed the effects of H3-receptor agonists. Treatment with R-HA at 2 micromol kg(-1) h(-1) and BP 2.94 at 1 mg kg(-1) tended to decrease, while that with SC 359 significantly increased basal heart rate (from 111 +/- 3 to 130 +/- 5 beats min(-1), P < or = 0.001). 4. Functional H3-receptors are present on sympathetic nerve endings in the dog heart. Their stimulation by R-alpha-methyl-histamine or BP 2.94 can inhibit noradrenaline release by the heart and its associated haemodynamic effects.


P2-receptor modulation of noradrenergic neurotransmission in rat kidney.

  • C Bohmann‎ et al.
  • British journal of pharmacology‎
  • 1997‎

1. ATP has previously been shown to act as a sympathetic cotransmitter in the rat kidney. The present study analyses the question of whether postganglionic sympathetic nerve endings in the kidney possess P2-receptors which modulate noradrenaline release. Rat kidneys were perfused with Krebs-Henseleit solution containing the noradrenaline uptake blockers cocaine and corticosterone and the alpha2-adrenoceptor antagonist rauwolscine. The renal nerves were electrically stimulated, in most experiments by 30 pulses applied at 1 Hz. The outflow of endogenous noradrenaline (or, in some experiments, of ATP and lactate dehydrogenase) as well as the perfusion pressure were measured simultaneously. 2. The P2-receptor agonist adenosine-5'-O-(3-thiotriphosphate) (ATPgammaS, 3-30 microM) reduced the renal nerve stimulation (RNS)-induced outflow of noradrenaline (estimated EC50 =8 microM). The P2-receptor antagonist cibacron blue 3GA (30 microM) shifted the concentration-inhibition curve for ATPgammaS to the right (apparent pKB value 4.7). 3. Cibacron blue 3GA (3-30 microM) and its isomer reactive blue 2 (3-30 microM) significantly increased RNS-induced outflow of noradrenaline in the presence of the P1-receptor antagonist 8-(p-sulphophenyl)theophylline (8-SPT, 100 microM) by about 70% and 90%, respectively. The P2-receptor antagonist suramin (30-300 microM) only tended to enhance RNS-induced outflow of noradrenaline. When the nerves were stimulated by short pulse trains consisting of 6 pulses applied at 100 Hz (conditions under which autoinhibition is inoperative), reactive blue 2 did not affect the RNS-induced outflow of noradrenaline. 4. RNS (120 pulses applied at 4 Hz) induced the outflow of ATP but not of the cytoplasmatic enzyme lactate dehydrogenase. 5. ATPgammaS (3-30 microM) concentration-dependently reduced pressor responses to RNS at 1 Hz. Cibacron blue 3GA, reactive blue 2 as well as suramin also reduced pressor responses to RNS (maximally by 50 to 70%). 6. This study in rat isolated kidney, in which the release of endogenous noradrenaline was measured, demonstrates that renal sympathetic nerves possess prejunctional P2-receptors that mediate inhibition of transmitter release. These prejunctional P2-receptors are activated by endogenous ligands, most likely ATP, released upon nerve activity. Both, P2-receptor agonists and P2-receptor antagonists reduced pressor responses to RNS either by inhibiting transmitter release or by blocking postjunctional vasoconstrictor P2-receptors.


Potent analgesic effects of anticonvulsants on peripheral thermal nociception in rats.

  • Slobodan M Todorovic‎ et al.
  • British journal of pharmacology‎
  • 2003‎

1. Anticonvulsant agents are commonly used to treat neuropathic pain conditions because of their effects on voltage- and ligand-gated channels in central pain pathways. However, their interaction with ion channels in peripheral pain pathways is poorly understood. Therefore, we studied the potential analgesic effects of commonly used anticonvulsant agents in peripheral nociception. 2. We injected anticonvulsants intradermally into peripheral receptive fields of sensory neurons in the hindpaws of adult rats, and studied pain perception using the model of acute thermal nociception. Commonly used anticonvulsants such as voltage-gated Na+ channel blockers, phenytoin and carbamazepine, and voltage-gated Ca2+ channel blockers, gabapentin and ethosuximide, induced dose-dependent analgesia in the injected paw, with ED50 values of 0.30, 0.32 and 8, 410 microg per 100 microl, respectively. 3. Thermal nociceptive responses were not affected in the contralateral, noninjected paws, indicating a lack of systemic effects with doses of anticonvulsants that elicited local analgesia. 4. Hill slope coefficients for the tested anticonvulsants indicate that the dose-response curve was less steep for gabapentin than for phenytoin, carbamazepine and ethosuximide. 5. Our data strongly suggest that cellular targets like voltage-gated Na+ and Ca2+ channels, similar to those that mediate the effects of anticonvulsant agents in the CNS, may exist in the peripheral nerve endings of rat sensory neurons. Thus, peripherally applied anticonvulsants that block voltage-gated Na+ and Ca2+ channels may be useful analgesics.


Anandamide induces cardiovascular and respiratory reflexes via vasosensory nerves in the anaesthetized rat.

  • P J Smith‎ et al.
  • British journal of pharmacology‎
  • 2001‎

1. We tested the hypothesis that sensory nerves innervating blood vessels play a role in the local and systemic regulation of the cardiovascular and respiratory (CVR) systems. We measured CVR reflexes evoked by administration of anandamide (86 - 863 nmoles) and capsaicin (0.3 - 10 nmoles) into the hindlimb vasculature of anaesthetized rats. 2. Anandamide and capsaicin each caused a rapid dose-dependent reflex fall in blood pressure and an increase in ventilation when injected intra-arterially into the hindlimb. 3. Action of both agonists at the vanilloid receptor (VR1) on perivascular sensory nerves was investigated using capsazepine (1 mg kg(-1) i.a.) a competitive VR1 antagonist, ruthenium red (1 mg kg(-1) i.a.), a non-competitive antagonist at VR1, or a desensitizing dose of capsaicin (200 nmoles i.a.). The cannabinoid receptor antagonist SR141716 (1 mg kg(-1) i.a.) was used to determine agonist activity at the CB(1) receptor. 4. Capsazepine, ruthenium red, or acute VR1 desensitization by capsaicin-pretreatment, markedly attenuated the reflex CVR responses evoked by anandamide and capsaicin (P< 0.05; paired Student's t-test). Blockade of CB(1) had no significant effect on the responses to anandamide. 5. Local sectioning of the femoral and sciatic nerves attenuated CVR responses to anandamide and capsaicin (P< 0.05). Vagotomy or carotid sinus sectioning had no significant effect on anandamide- or capsaicin-induced responses. 6. These data demonstrate that both the endogenous cannabinoid, anandamide, and the vanilloid, capsaicin, evoke CVR reflexes when injected intra-arterially into the rat hindlimb. These responses appear to be mediated reflexly via VR1 located on sensory nerve endings within the hindlimb vasculature.


Local neurogenic regulation of rat hindlimb circulation: CO2-induced release of calcitonin gene-related peptide from sensory nerves.

  • M Yamada‎ et al.
  • British journal of pharmacology‎
  • 1997‎

1. The mechanism of release of calcitonin gene-related peptide (CGRP) from sensory nerves in response to skeletal muscle contraction was investigated in the rat hindlimb in vivo and in vitro. 2. In the anaesthetized rat, sciatic nerve stimulation at 10 Hz for 1 min caused a hyperaemic response in the hindlimb. During the response, partial pressure of CO2 in the venous blood effluent from the hindlimb significantly increased from 43 +/- 3 to 73 +/- 8 mmHg, whereas a small decrease in pH and no appreciable change in partial pressure of O2 were observed. 3. An intra-arterial bolus injection of NaHCO3 (titrated to pH 7.2 with HCl), which elevated PCO2 of the venous blood, caused a sustained increase in regional blood flow of the iliac artery. Capsaicin (0.33 micromol kg(-1), i.a.) and a specific calcitonin gene-related peptide (CGRP) receptor antagonist, CGRP(8-37), (100 nmol kg(-1) min(-1), i.v.) significantly suppressed the hyperaemic response to NaHCO3. Neither ND(omega)-nitro-L-arginine methyl ester (1 micromol kg(-1) min(-1), i.v.) nor indomethacin (5 mg kg(-1), i.v.) affected the response. 4. The serum level of CGRP-like immunoreactivity in the venous blood was significantly increased by a bolus injection of NaHCO3 (pH = 7.2) from 50 +/- 4 to 196 +/- 16 fmol ml(-1). 5. In the isolated hindlimb perfused with Krebs-Ringer solution, a bolus injection of NaHCO3 (pH = 7.2) caused a decrease in perfusion pressure which was composed of two responses, i.e., an initial transient response and a slowly-developing long-lasting one. CGRP(8-37) significantly inhibited the latter response by 73%. 6. These results suggest that CO2 liberated from exercising skeletal muscle activates capsaicin-sensitive perivascular sensory nerves locally, which results in the release of CGRP from their peripheral endings, and then the released peptide causes local vasodilatation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: