2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Molecular Determinants of Brevetoxin Binding to Voltage-Gated Sodium Channels.

  • Keiichi Konoki‎ et al.
  • Toxins‎
  • 2019‎

Brevetoxins are produced by dinoflagellates such as Karenia brevis in warm-water red tides and cause neurotoxic shellfish poisoning. They bind to voltage-gated sodium channels at neurotoxin receptor 5, making the channels more active by shifting the voltage-dependence of activation to more negative potentials and by slowing the inactivation process. Previous work using photoaffinity labeling identified binding to the IS6 and IVS5 transmembrane segments of the channel α subunit. We used alanine-scanning mutagenesis to identify molecular determinants for brevetoxin binding in these regions as well as adjacent regions IVS5-SS1 and IVS6. Most of the mutant channels containing single alanine substitutions expressed functional protein in tsA-201 cells and bound to the radioligand [42-3H]-PbTx3. Binding affinity for the great majority of mutant channels was indistinguishable from wild type. However, transmembrane segments IS6, IVS5 and IVS6 each contained 2 to 4 amino acid positions where alanine substitution resulted in a 2-3-fold reduction in brevetoxin affinity, and additional mutations caused a similar increase in brevetoxin affinity. These findings are consistent with a model in which brevetoxin binds to a protein cleft comprising transmembrane segments IS6, IVS5 and IVS6 and makes multiple distributed interactions with these α helices. Determination of brevetoxin affinity for Nav1.2, Nav1.4 and Nav1.5 channels showed that Nav1.5 channels had a characteristic 5-fold reduction in affinity for brevetoxin relative to the other channel isoforms, suggesting the interaction with sodium channels is specific despite the distributed binding determinants.


Three Peptide Modulators of the Human Voltage-Gated Sodium Channel 1.7, an Important Analgesic Target, from the Venom of an Australian Tarantula.

  • Chun Yuen Chow‎ et al.
  • Toxins‎
  • 2015‎

Voltage-gated sodium (NaV) channels are responsible for propagating action potentials in excitable cells. NaV1.7 plays a crucial role in the human pain signalling pathway and it is an important therapeutic target for treatment of chronic pain. Numerous spider venom peptides have been shown to modulate the activity of NaV channels and these peptides represent a rich source of research tools and therapeutic lead molecules. The aim of this study was to determine the diversity of NaV1.7-active peptides in the venom of an Australian Phlogius sp. tarantula and to characterise their potency and subtype selectivity. We isolated three novel peptides, μ-TRTX-Phlo1a, -Phlo1b and -Phlo2a, that inhibit human NaV1.7 (hNaV1.7). Phlo1a and Phlo1b are 35-residue peptides that differ by one amino acid and belong in NaSpTx family 2. The partial sequence of Phlo2a revealed extensive similarity with ProTx-II from NaSpTx family 3. Phlo1a and Phlo1b inhibit hNaV1.7 with IC50 values of 459 and 360 nM, respectively, with only minor inhibitory activity on rat NaV1.2 and hNaV1.5. Although similarly potent at hNaV1.7 (IC50 333 nM), Phlo2a was less selective, as it also potently inhibited rNaV1.2 and hNaV1.5. All three peptides cause a depolarising shift in the voltage-dependence of hNaV1.7 activation.


Purification and Characterization of JZTx-14, a Potent Antagonist of Mammalian and Prokaryotic Voltage-Gated Sodium Channels.

  • Jie Zhang‎ et al.
  • Toxins‎
  • 2018‎

Exploring the interaction of ligands with voltage-gated sodium channels (NaVs) has advanced our understanding of their pharmacology. Herein, we report the purification and characterization of a novel non-selective mammalian and bacterial NaVs toxin, JZTx-14, from the venom of the spider Chilobrachys jingzhao. This toxin potently inhibited the peak currents of mammalian NaV1.2⁻1.8 channels and the bacterial NaChBac channel with low IC50 values (<1 µM), and it mainly inhibited the fast inactivation of the NaV1.9 channel. Analysis of NaV1.5/NaV1.9 chimeric channel showed that the NaV1.5 domain II S3⁻4 loop is involved in toxin association. Kinetics data obtained from studying toxin⁻NaV1.2 channel interaction showed that JZTx-14 was a gating modifier that possibly trapped the channel in resting state; however, it differed from site 4 toxin HNTx-III by irreversibly blocking NaV currents and showing state-independent binding with the channel. JZTx-14 might stably bind to a conserved toxin pocket deep within the NaV1.2⁻1.8 domain II voltage sensor regardless of channel conformation change, and its effect on NaVs requires the toxin to trap the S3⁻4 loop in its resting state. For the NaChBac channel, JZTx-14 positively shifted its conductance-voltage (G⁻V) and steady-state inactivation relationships. An alanine scan analysis of the NaChBac S3⁻4 loop revealed that the 108th phenylalanine (F108) was the key residue determining the JZTx-14⁻NaChBac interaction. In summary, this study provided JZTx-14 with potent but promiscuous inhibitory activity on both the ancestor bacterial NaVs and the highly evolved descendant mammalian NaVs, and it is a useful probe to understand the pharmacology of NaVs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: