Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Characterization of a chloroplast isoform of serine acetyltransferase from the thermo-acidiphilic red alga Cyanidioschyzon merolae.

  • K Toda‎ et al.
  • Biochimica et biophysica acta‎
  • 1998‎

We isolated a gene for serine acetyltransferase (SAT), a key enzyme in sulfate assimilation, from the primitive red alga Cyanidioschyzon merolae, an inhabitant of sulfurous hot springs, and designated this gene cmSAT. The N-terminal region of the cmSAT protein has characteristics of a chloroplast targeting peptide. cmSAT protein fused with a 6x histidine tag complemented a SAT deficient Escherichia coli mutant. The protein was purified with its SAT activity, which was inhibited by cysteine, using the high affinity of the histidine tag in an Ni-NTA column. The Km values for acetyl-CoA and l-serine were 0.3 and 0.1 mM, respectively. Southern blotting indicated the existence of other SAT isoforms in C. merolae. A 2.4 kb transcript was always detected when growth was synchronized under a 12-h light/dark cycle. Under these conditions, a 31-kDa protein was always detected on immunoblots, indicating processing of the cmSAT protein and constitutive expression of cmSAT. A 45-kDa protein, thought to be the unprocessed cmSAT protein, was detected in the dark period, from M phase to early G1 phase. No significant change in the level of protein expression was detected under continuous darkness or in a sulfate-deficient medium. Using immunoelectron microscopy, the cmSAT protein was primarily detected in the stroma and a few were detected in the cytoplasm, which indicate that cmSAT protein is transported to and functions in a chloroplast.


Location and characterization of the O-GlcNAcase active site.

  • Clifford Toleman‎ et al.
  • Biochimica et biophysica acta‎
  • 2006‎

NCOAT is a bifunctional nucleo-cytoplasmic protein with both O-GlcNAcase and histone acetyltransferase domains. The O-GlcNAcase domain catalyzes the removal of O-linked GlcNAc modifications from proteins and we have found that it resides in the N-terminal third of NCOAT. The recognition of the substrate GlcNAc suggests that the O-GlcNAcase is related in structure and catalytic mechanism to chitinases, hexosaminidases and hyaluronidases. These families of glycosidases all possess a catalytic doublet of carboxylate-containing residues, with one providing an acid-base function, and the second acting to orient and use the N-acetyl group of GlcNAc during catalysis. Indeed, we show that the O-GlcNAcase also possesses the catalytic doublet motif shared among these enzymes and that these two essential residues are aspartic acids at positions 175 and 177, respectively, in mouse NCOAT. In addition, a conserved cysteine at 166 and a conserved aspartic acid at 174 were also found to be necessary for fully efficient enzymatic activity. Given this information, we propose that the O-GlcNAcase active site resembles those of the above glycosidases which carry out the hydrolysis of GlcNAc linkages in a substrate-assisted acid-base manner.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: