Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Muscle Transcriptomics Shows Overexpression of Cadherin 1 in Inclusion Body Myositis.

  • Chiseko Ikenaga‎ et al.
  • Annals of neurology‎
  • 2022‎

This study aimed to elucidate the molecular features of inclusion body myositis (IBM).


Calcium dysregulation, functional calpainopathy, and endoplasmic reticulum stress in sporadic inclusion body myositis.

  • David R Amici‎ et al.
  • Acta neuropathologica communications‎
  • 2017‎

Sporadic inclusion body myositis (IBM) is the most common primary myopathy in the elderly, but its pathoetiology is still unclear. Perturbed myocellular calcium (Ca2+) homeostasis can exacerbate many of the factors proposed to mediate muscle degeneration in IBM, such as mitochondrial dysfunction, protein aggregation, and endoplasmic reticulum stress. Ca2+ dysregulation may plausibly be initiated in IBM by immune-mediated membrane damage and/or abnormally accumulating proteins, but no studies to date have investigated Ca2+ regulation in IBM patients. We first investigated protein expression via immunoblot in muscle biopsies from IBM, dermatomyositis, and non-myositis control patients, identifying several differentially expressed Ca2+-regulatory proteins in IBM. Next, we investigated the Ca2+-signaling transcriptome by RNA-seq, finding 54 of 183 (29.5%) genes from an unbiased list differentially expressed in IBM vs. controls. Using an established statistical approach to relate genes with causal transcription networks, Ca2+ abundance was considered a significant upstream regulator of observed whole-transcriptome changes. Post-hoc analyses of Ca2+-regulatory mRNA and protein data indicated a lower protein to transcript ratio in IBM vs. controls, which we hypothesized may relate to increased Ca2+-dependent proteolysis and decreased protein translation. Supporting this hypothesis, we observed robust (4-fold) elevation in the autolytic activation of a Ca2+-activated protease, calpain-1, as well as increased signaling for translational attenuation (eIF2a phosphorylation) downstream of the unfolded protein response. Finally, in IBM samples we observed mRNA and protein under-expression of calpain-3, the skeletal muscle-specific calpain, which broadly supports proper Ca2+ homeostasis. Together, these data provide novel insight into mechanisms by which intracellular Ca2+ regulation is perturbed in IBM and offer evidence of pathological downstream effects.


The phenotype of myositis patients with anti-Ku autoantibodies.

  • Maria Casal-Dominguez‎ et al.
  • Seminars in arthritis and rheumatism‎
  • 2021‎

To define the clinical features of anti-Ku-positive myositis patients and to determine the reliability of the Euroline assay to detect anti-Ku autoantibodies.


Identification of Unique microRNA Profiles in Different Types of Idiopathic Inflammatory Myopathy.

  • Sandra Muñoz-Braceras‎ et al.
  • Cells‎
  • 2023‎

Dermatomyositis (DM), antisynthetase syndrome (AS), immune-mediated necrotizing myopathy (IMNM), and inclusion body myositis (IBM) are four major types of idiopathic inflammatory myopathy (IIM). Muscle biopsies from each type of IIM have unique transcriptomic profiles. MicroRNAs (miRNAs) target messenger RNAs (mRNAs), thereby regulating their expression and modulating transcriptomic profiles. In this study, 18 DM, 12 IMNM, 6 AS, 6 IBM, and 6 histologically normal muscle biopsies underwent miRNA profiling using the NanoString nCounter system. Eleven miRNAs were exclusively differentially expressed in DM compared to controls, seven miRNAs were only differentially expressed in AS, and nine miRNAs were specifically upregulated in IBM. No differentially expressed miRNAs were identified in IMNM. We also analyzed miRNA-mRNA associations to identify putative targets of differentially expressed miRNAs. In DM and AS, these were predominantly related to inflammation and cell cycle progression. Moreover, our analysis showed an association between miR-30a-3p, miR-30e-3p, and miR-199b-5p downregulation in DM and the upregulation of target genes induced by type I interferon. In conclusion, we show that muscle biopsies from DM, AS, and IBM patients have unique miRNA signatures and that these miRNAs might play a role in regulating the expression of genes known to be involved in IIM pathogenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: