Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Evidence for pre- and post-power stroke of cross-bridges of contracting skeletal myofibrils.

  • K Midde‎ et al.
  • Biophysical journal‎
  • 2011‎

We examined the orientational fluctuations of a small number of myosin molecules (approximately three) in working skeletal muscle myofibrils. Myosin light chain 1 (LC1) was labeled with a fluorescent dye and exchanged with the native LC1 of skeletal muscle myofibrils cross-linked with 1-ethyl-3-[3(dimethylamino) propyl] carbodiimide to prevent shortening. We observed a small volume within the A-band (∼10(-15) L) by confocal microscopy, and measured cyclic fluctuations in the orientation of the myosin neck (containing LC1) by recording the parallel and perpendicular components of fluorescent light emitted by the fluorescently labeled myosin LC1. Histograms of orientational fluctuations from fluorescent molecules in rigor were represented by a single Gaussian distribution. In contrast, histograms from contracting muscles were best fit by at least two Gaussians. These results provide direct evidence that cross-bridges in working skeletal muscle assume two distinct conformations, presumably corresponding to the pre- and post-power-stroke states.


Single molecule kinetics in the familial hypertrophic cardiomyopathy D166V mutant mouse heart.

  • Priya Muthu‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2010‎

One of the sarcomeric mutations associated with a malignant phenotype of familial hypertrophic cardiomyopathy (FHC) is the D166V point mutation in the ventricular myosin regulatory light chain (RLC) encoded by the MYL2 gene. In this report we show that the rates of myosin cross-bridge attachment and dissociation are significantly different in isometrically contracting cardiac myofibrils from right ventricles of transgenic (Tg)-D166V and Tg-WT mice. We have derived the myosin cross-bridge kinetic rates by tracking the orientation of a fluorescently labeled single actin molecule. Orientation (measured by polarized fluorescence) oscillated between two states, corresponding to the actin-bound and actin-free states of the myosin cross-bridge. The rate of cross-bridge attachment during isometric contraction decreased from 3 s(-1) in myofibrils from Tg-WT to 1.4 s(-1) in myofibrils from Tg-D166V. The rate of detachment decreased from 1.3 s(-1) (Tg-WT) to 1.2 s(-1) (Tg-D166V). We also showed that the level of RLC phosphorylation was largely decreased in Tg-D166V myofibrils compared to Tg-WT. Our findings suggest that alterations in the myosin cross-bridge kinetics brought about by the D166V mutation in RLC might be responsible for the compromised function of the mutated hearts and lead to their inability to efficiently pump blood.


The spatial distribution of actin and mechanical cycle of myosin are different in right and left ventricles of healthy mouse hearts.

  • J Nagwekar‎ et al.
  • Biochemistry‎
  • 2014‎

The contraction of the right ventricle (RV) expels blood into the pulmonary circulation, and the contraction of the left ventricle (LV) pumps blood into the systemic circulation through the aorta. The respective afterloads imposed on the LV and RV by aortic and pulmonary artery pressures create very different mechanical requirements for the two ventricles. Indeed, differences have been observed in the contractile performance between left and right ventricular myocytes in dilated cardiomyopathy, in congestive heart failure, and in energy usage and speed of contraction at light loads in healthy hearts. In spite of these functional differences, it is commonly believed that the right and left ventricular muscles are identical because there were no differences in stress development, twitch duration, work performance, or power among the RV and LV in dogs. This report shows that on a mesoscopic scale [when only a few molecules are studied (here three to six molecules of actin) in ex vivo ventricular myofibrils], the two ventricles in rigor differ in the degree of orientational disorder of actin within in filaments and during contraction in the kinetics of the cross-bridge cycle.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: