Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

alpha(4)-integrin mediates neutrophil-induced free radical injury to cardiac myocytes.

  • B Y Poon‎ et al.
  • The Journal of cell biology‎
  • 2001‎

Previous work has demonstrated that circulating neutrophils (polymorphonuclear leukocytes [PMNs]) adhere to cardiac myocytes via beta(2)-integrins and cause cellular injury via the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase enzyme system. Since PMNs induced to leave the vasculature (emigrated PMNs) express the alpha(4)-integrin, we asked whether (a) these PMNs also induce myocyte injury via NADPH oxidase; (b) beta(2)-integrins (CD18) still signal oxidant production, or if this process is now coupled to the alpha(4)-integrin; and (c) dysfunction is superoxide dependent within the myocyte or at the myocyte-PMN interface. Emigrated PMNs exposed to cardiac myocytes quickly induced significant changes in myocyte function. Myocyte shortening was decreased by 30-50% and rates of contraction and relaxation were reduced by 30% within the first 10 min. Both alpha(4)-integrin antibody (Ab)-treated PMNs and NADPH oxidase-deficient PMNs were unable to reduce myocyte shortening. An increased level of oxidative stress was detected in myocytes within 5 min of PMN adhesion. Addition of an anti-alpha(4)-integrin Ab, but not an anti-CD18 Ab, prevented oxidant production, suggesting that in emigrated PMNs the NADPH oxidase system is uncoupled from CD18 and can be activated via the alpha(4)-integrin. Addition of exogenous superoxide dismutase (SOD) inhibited all parameters of dysfunction measured, whereas overexpression of intracellular SOD within the myocytes did not inhibit the oxidative stress or the myocyte dysfunction caused by the emigrated PMNs. These findings demonstrate that profound molecular changes occur within PMNs as they emigrate, such that CD18 and associated intracellular signaling pathways leading to oxidant production are uncoupled and newly expressed alpha(4)-integrin functions as the ligand that signals oxidant production. The results also provide pathological relevance as the emigrated PMNs have the capacity to injure cardiac myocytes through the alpha(4)-integrin-coupled NADPH oxidase pathway that can be inhibited by extracellular, but not intracellular SOD.


Organization of beta-adrenoceptor signaling compartments by sympathetic innervation of cardiac myocytes.

  • Olga G Shcherbakova‎ et al.
  • The Journal of cell biology‎
  • 2007‎

The sympathetic nervous system regulates cardiac function through the activation of adrenergic receptors (ARs). beta(1) and beta(2)ARs are the primary sympathetic receptors in the heart and play different roles in regulating cardiac contractile function and remodeling in response to injury. In this study, we examine the targeting and trafficking of beta(1) and beta(2)ARs at cardiac sympathetic synapses in vitro. Sympathetic neurons form functional synapses with neonatal cardiac myocytes in culture. The myocyte membrane develops into specialized zones that surround contacting axons and contain accumulations of the scaffold proteins SAP97 and AKAP79/150 but are deficient in caveolin-3. The beta(1)ARs are enriched within these zones, whereas beta(2)ARs are excluded from them after stimulation of neuronal activity. The results indicate that specialized signaling domains are organized in cardiac myocytes at sites of contact with sympathetic neurons and that these domains are likely to play a role in the subtype-specific regulation of cardiac function by beta(1) and beta(2)ARs in vivo.


Thin filament protein dynamics in fully differentiated adult cardiac myocytes: toward a model of sarcomere maintenance.

  • D E Michele‎ et al.
  • The Journal of cell biology‎
  • 1999‎

Sarcomere maintenance, the continual process of replacement of contractile proteins of the myofilament lattice with newly synthesized proteins, in fully differentiated contractile cells is not well understood. Adenoviral-mediated gene transfer of epitope-tagged tropomyosin (Tm) and troponin I (TnI) into adult cardiac myocytes in vitro along with confocal microscopy was used to examine the incorporation of these newly synthesized proteins into myofilaments of a fully differentiated contractile cell. The expression of epitope-tagged TnI resulted in greater replacement of the endogenous TnI than the replacement of the endogenous Tm with the expressed epitope-tagged Tm suggesting that the rates of myofilament replacement are limited by the turnover of the myofilament bound protein. Interestingly, while TnI was first detected in cardiac sarcomeres along the entire length of the thin filament, the epitope-tagged Tm preferentially replaced Tm at the pointed end of the thin filament. These results support a model for sarcomeric maintenance in fully differentiated cardiac myocytes where (a) as myofilament proteins turnover within the cell they are rapidly exchanged with newly synthesized proteins, and (b) the nature of replacement of myofilament proteins (ordered or stochastic) is protein specific, primarily affected by the structural properties of the myofilament proteins, and may have important functional consequences.


Rb and p130 control cell cycle gene silencing to maintain the postmitotic phenotype in cardiac myocytes.

  • Patima Sdek‎ et al.
  • The Journal of cell biology‎
  • 2011‎

The mammalian heart loses its regenerative potential soon after birth. Adult cardiac myocytes (ACMs) permanently exit the cell cycle, and E2F-dependent genes are stably silenced, although the underlying mechanism is unclear. Heterochromatin, which silences genes in many biological contexts, accumulates with cardiac differentiation. H3K9me3, a histone methylation characteristic of heterochromatin, also increases in ACMs and at E2F-dependent promoters. We hypothesize that genes relevant for cardiac proliferation are targeted to heterochromatin by retinoblastoma (Rb) family members interacting with E2F transcription factors and recruiting heterochromatin protein 1 (HP1) proteins. To test this hypothesis, we created cardiac-specific Rb and p130 inducible double knockout (IDKO) mice. IDKO ACMs showed a decrease in total heterochromatin, and cell cycle genes were derepressed, leading to proliferation of ACMs. Although Rb/p130 deficiency had no effect on total H3K9me3 levels, recruitment of HP1-γ to promoters was lost. Depleting HP1-γ up-regulated proliferation-promoting genes in ACMs. Thus, Rb and p130 have overlapping roles in maintaining the postmitotic state of ACMs through their interaction with HP1-γ to direct heterochromatin formation and silencing of proliferation-promoting genes.


Wnt/frizzled-2 signaling induces aggregation and adhesion among cardiac myocytes by increased cadherin-beta-catenin complex.

  • T Toyofuku‎ et al.
  • The Journal of cell biology‎
  • 2000‎

Wingless is known to be required for induction of cardiac mesoderm in Drosophila, but the function of Wnt family proteins, vertebrate homologues of wingless, in cardiac myocytes remains unknown. When medium conditioned by HEK293 cells overexpressing Wnt-3a or -5a was applied to cultured neonatal cardiac myocytes, Wnt proteins induced myocyte aggregation in the presence of fibroblasts, concomitant with increases in beta-catenin and N-cadherin in the myocytes and with E- and M-cadherins in the fibroblasts. The aggregation was inhibited by anti-N-cadherin antibody and induced by constitutively active beta-catenin, but was unaffected by dominant negative and dominant positive T cell factor (TCF) mutants. Thus, increased stabilization of complexed cadherin-beta-catenin in both cell types appears crucial for the morphological effect of Wnt on cardiac myocytes. Furthermore, myocytes overexpressing a dominant negative frizzled-2, but not a dominant negative frizzled-4, failed to aggregate in response to Wnt, indicating frizzled-2 to be the predominant receptor mediating aggregation. By contrast, analysis of bromodeoxyuridine incorporation and transcription of various cardiogenetic markers showed Wnt to have little or no impact on cell proliferation or differentiation. These findings suggest that a Wnt-frizzled-2 signaling pathway is centrally involved in the morphological arrangement of cardiac myocytes in neonatal heart through stabilization of complexed cadherin- beta-catenin.


Stimulation of the p38 mitogen-activated protein kinase pathway in neonatal rat ventricular myocytes by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine: a role in cardiac myocyte hypertrophy?

  • A Clerk‎ et al.
  • The Journal of cell biology‎
  • 1998‎

We examined the activation of the p38 mitogen-activated protein kinase (p38-MAPK) pathway by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine in primary cultures of cardiac myocytes from neonatal rat hearts. Both agonists increased the phosphorylation (activation) of p38-MAPK by approximately 12-fold. A p38-MAPK substrate, MAPK-activated protein kinase 2 (MAPKAPK2), was activated approximately fourfold and 10 microM SB203580, a p38-MAPK inhibitor, abolished this activation. Phosphorylation of the MAPKAPK2 substrate, heat shock protein 25/27, was also increased. Using selective inhibitors, activation of the p38-MAPK pathway by endothelin-1 was shown to involve protein kinase C but not Gi/Go nor the extracellularly responsive kinase (ERK) pathway. SB203580 failed to inhibit the morphological changes associated with cardiac myocyte hypertrophy induced by endothelin-1 or phenylephrine between 4 and 24 h. However, it decreased the myofibrillar organization and cell profile at 48 h. In contrast, inhibition of the ERK cascade with PD98059 prevented the increase in myofibrillar organization but not cell profile. These data are not consistent with a role for the p38-MAPK pathway in the immediate induction of the morphological changes of hypertrophy but suggest that it may be necessary over a longer period to maintain the response.


A novel LIM protein Cal promotes cardiac differentiation by association with CSX/NKX2-5.

  • Hiroshi Akazawa‎ et al.
  • The Journal of cell biology‎
  • 2004‎

The cardiac homeobox transcription factor CSX/NKX2-5 plays an important role in vertebrate heart development. Using a yeast two-hybrid screening, we identified a novel LIM domain-containing protein, named CSX-associated LIM protein (Cal), that interacts with CSX/NKX2-5. CSX/NKX2-5 and Cal associate with each other both in vivo and in vitro, and the LIM domains of Cal and the homeodomain of CSX/NKX2-5 were necessary for mutual binding. Cal itself possessed the transcription-promoting activity, and cotransfection of Cal enhanced CSX/NKX2-5-induced activation of atrial natriuretic peptide gene promoter. Cal contained a functional nuclear export signal and shuttled from the cytoplasm into the nucleus in response to calcium. Accumulation of Cal in the nucleus of P19CL6 cells promoted myocardial cell differentiation accompanied by increased expression levels of the target genes of CSX/NKX2-5. These results suggest that a novel LIM protein Cal induces cardiomyocyte differentiation through its dynamic intracellular shuttling and association with CSX/NKX2-5.


Activation of nuclear factor-kappaB is necessary for myotrophin-induced cardiac hypertrophy.

  • Sudhiranjan Gupta‎ et al.
  • The Journal of cell biology‎
  • 2002‎

The transcription factor nuclear factor-kappaB (NF-kappaB) regulates expression of a variety of genes involved in immune responses, inflammation, proliferation, and programmed cell death (apoptosis). Here, we show that in rat neonatal ventricular cardiomyocytes, activation of NF-kappaB is involved in the hypertrophic response induced by myotrophin, a hypertrophic activator identified from spontaneously hypertensive rat heart and cardiomyopathic human hearts. Myotrophin treatment stimulated NF-kappaB nuclear translocation and transcriptional activity, accompanied by IkappaB-alpha phosphorylation and degradation. Consistently, myotrophin-induced NF-kappaB activation was enhanced by wild-type IkappaB kinase (IKK) beta and abolished by the dominant-negative IKKbeta or a general PKC inhibitor, calphostin C. Importantly, myotrophin-induced expression of two hypertrophic genes (atrial natriuretic factor [ANF] and c-myc) and also enhanced protein synthesis were partially inhibited by a potent NF-kappaB inhibitor, pyrrolidine dithio-carbamate (PDTC), and calphostin C. Expression of the dominant-negative form of IkappaB-alpha or IKKbeta also partially inhibited the transcriptional activity of ANF induced by myotrophin. These findings suggest that the PKC-IKK-NF-kappaB pathway may play a critical role in mediating the myotrophin-induced hypertrophic response in cardiomyocytes.


Studies on cardiac myofibrillogenesis with antibodies to titin, actin, tropomyosin, and myosin.

  • S M Wang‎ et al.
  • The Journal of cell biology‎
  • 1988‎

Cardiac myofibrillogenesis was examined in cultured chick cardiac cells by immunofluorescence using antibodies against titin, actin, tropomyosin, and myosin. Primitive cardiomyocytes initially contained stress fiber-like structures (SFLS) that stained positively for alpha actin and/or muscle tropomyosin. In some cases the staining for muscle tropomyosin and alpha actin was disproportionate; this suggests that the synthesis and/or assembly of these two isoforms into the SFLS may not be stoichiometric. The alpha actin containing SFLS in these myocytes could be classified as either central or peripheral; central SFLS showed developing sarcomeric titin while peripheral SFLS had weak titin fluorescence and a more uniform stain distribution. Sarcomeric patterns of titin and myosin were present at multiple sites on these structures. A pair of titin staining bands was clearly associated with each developing A band even at the two or three sarcomere stage, although occasional examples of a titin band being associated with a half sarcomere were noted. The appearance of sarcomeric titin patterns coincided or preceded sarcomere periodicity of either alpha actin or muscle tropomyosin. The early appearance of titin in myofibrillogenesis suggests it may have a role in filament alignment during sarcomere assembly.


Coupling primary and stem cell-derived cardiomyocytes in an in vitro model of cardiac cell therapy.

  • Yvonne Aratyn-Schaus‎ et al.
  • The Journal of cell biology‎
  • 2016‎

The efficacy of cardiac cell therapy depends on the integration of existing and newly formed cardiomyocytes. Here, we developed a minimal in vitro model of this interface by engineering two cell microtissues (μtissues) containing mouse cardiomyocytes, representing spared myocardium after injury, and cardiomyocytes generated from embryonic and induced pluripotent stem cells, to model newly formed cells. We demonstrated that weaker stem cell-derived myocytes coupled with stronger myocytes to support synchronous contraction, but this arrangement required focal adhesion-like structures near the cell-cell junction that degrade force transmission between cells. Moreover, we developed a computational model of μtissue mechanics to demonstrate that a reduction in isometric tension is sufficient to impair force transmission across the cell-cell boundary. Together, our in vitro and in silico results suggest that mechanotransductive mechanisms may contribute to the modest functional benefits observed in cell-therapy studies by regulating the amount of contractile force effectively transmitted at the junction between newly formed and spared myocytes.


A role for the p38 mitogen-activated protein kinase pathway in myocardial cell growth, sarcomeric organization, and cardiac-specific gene expression.

  • D Zechner‎ et al.
  • The Journal of cell biology‎
  • 1997‎

Three hallmark features of the cardiac hypertrophic growth program are increases in cell size, sarcomeric organization, and the induction of certain cardiac-specific genes. All three features of hypertrophy are induced in cultured myocardial cells by alpha1- adrenergic receptor agonists, such as phenylephrine (PE) and other growth factors that activate mitogen- activated protein kinases (MAPKs). In this study the MAPK family members extracellular signal-regulated kinase (ERK), c-jun NH2-terminal kinase (JNK), and p38 were activated by transfecting cultured cardiac myocytes with constructs encoding the appropriate kinases possessing gain-of-function mutations. Transfected cells were then analyzed for changes in cell size, sarcomeric organization, and induction of the genes for the A- and B-type natriuretic peptides (NPs), as well as the alpha-skeletal actin (alpha-SkA) gene. While activation of JNK and/or ERK with MEKK1COOH or Raf-1 BXB, respectively, augmented cell size and effected relatively modest increases in NP and alpha-SkA promoter activities, neither upstream kinase conferred sarcomeric organization. However, transfection with MKK6 (Glu), which specifically activated p38, augmented cell size, induced NP and alpha-Ska promoter activities by up to 130-fold, and elicited sarcomeric organization in a manner similar to PE. Moreover, all three growth features induced by MKK6 (Glu) or PE were blocked with the p38-specific inhibitor, SB 203580. These results demonstrate novel and potentially central roles for MKK6 and p38 in the regulation of myocardial cell hypertrophy.


I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure.

  • W A Linke‎ et al.
  • The Journal of cell biology‎
  • 1999‎

In cardiac muscle, the giant protein titin exists in different length isoforms expressed in the molecule's I-band region. Both isoforms, termed N2-A and N2-B, comprise stretches of Ig-like modules separated by the PEVK domain. Central I-band titin also contains isoform-specific Ig-motifs and nonmodular sequences, notably a longer insertion in N2-B. We investigated the elastic behavior of the I-band isoforms by using single-myofibril mechanics, immunofluorescence microscopy, and immunoelectron microscopy of rabbit cardiac sarcomeres stained with sequence-assigned antibodies. Moreover, we overexpressed constructs from the N2-B region in chick cardiac cells to search for possible structural properties of this cardiac-specific segment. We found that cardiac titin contains three distinct elastic elements: poly-Ig regions, the PEVK domain, and the N2-B sequence insertion, which extends approximately 60 nm at high physiological stretch. Recruitment of all three elements allows cardiac titin to extend fully reversibly at physiological sarcomere lengths, without the need to unfold Ig domains. Overexpressing the entire N2-B region or its NH(2) terminus in cardiac myocytes greatly disrupted thin filament, but not thick filament structure. Our results strongly suggest that the NH(2)-terminal N2-B domains are necessary to stabilize thin filament integrity. N2-B-titin emerges as a unique region critical for both reversible extensibility and structural maintenance of cardiac myofibrils.


Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement.

  • Clifford P Brangwynne‎ et al.
  • The Journal of cell biology‎
  • 2006‎

Cytoskeletal microtubules have been proposed to influence cell shape and mechanics based on their ability to resist large-scale compressive forces exerted by the surrounding contractile cytoskeleton. Consistent with this, cytoplasmic microtubules are often highly curved and appear buckled because of compressive loads. However, the results of in vitro studies suggest that microtubules should buckle at much larger length scales, withstanding only exceedingly small compressive forces. This discrepancy calls into question the structural role of microtubules, and highlights our lack of quantitative knowledge of the magnitude of the forces they experience and can withstand in living cells. We show that intracellular microtubules do bear large-scale compressive loads from a variety of physiological forces, but their buckling wavelength is reduced significantly because of mechanical coupling to the surrounding elastic cytoskeleton. We quantitatively explain this behavior, and show that this coupling dramatically increases the compressive forces that microtubules can sustain, suggesting they can make a more significant structural contribution to the mechanical behavior of the cell than previously thought possible.


Notch1 signaling stimulates proliferation of immature cardiomyocytes.

  • Chiara Collesi‎ et al.
  • The Journal of cell biology‎
  • 2008‎

The identification of the molecular mechanisms controlling cardiomyocyte proliferation during the embryonic, fetal, and early neonatal life appears of paramount interest in regard to exploiting this information to promote cardiac regeneration. Here, we show that the proliferative potential of neonatal rat cardiomyocytes is powerfully stimulated by the sustained activation of the Notch pathway. We found that Notch1 is expressed in proliferating ventricular immature cardiac myocytes (ICMs) both in vitro and in vivo, and that the number of Notch1-positive cells in the heart declines with age. Notch1 expression in ICMs paralleled the expression of its Jagged1 ligand on non-myocyte supporting cells. The inhibition of Notch signaling in ICMs blocked their proliferation and induced apoptosis; in contrast, its activation by Jagged1 or by the constitutive expression of its activated form using an adeno-associated virus markedly stimulated proliferative signaling and promoted ICM expansion. Maintenance or reactivation of Notch signaling in cardiac myocytes might represent an interesting target for innovative regenerative therapy.


Voltage-gated Nav channel targeting in the heart requires an ankyrin-G dependent cellular pathway.

  • John S Lowe‎ et al.
  • The Journal of cell biology‎
  • 2008‎

Voltage-gated Na(v) channels are required for normal electrical activity in neurons, skeletal muscle, and cardiomyocytes. In the heart, Na(v)1.5 is the predominant Na(v) channel, and Na(v)1.5-dependent activity regulates rapid upstroke of the cardiac action potential. Na(v)1.5 activity requires precise localization at specialized cardiomyocyte membrane domains. However, the molecular mechanisms underlying Na(v) channel trafficking in the heart are unknown. In this paper, we demonstrate that ankyrin-G is required for Na(v)1.5 targeting in the heart. Cardiomyocytes with reduced ankyrin-G display reduced Na(v)1.5 expression, abnormal Na(v)1.5 membrane targeting, and reduced Na(+) channel current density. We define the structural requirements on ankyrin-G for Na(v)1.5 interactions and demonstrate that loss of Na(v)1.5 targeting is caused by the loss of direct Na(v)1.5-ankyrin-G interaction. These data are the first report of a cellular pathway required for Na(v) channel trafficking in the heart and suggest that ankyrin-G is critical for cardiac depolarization and Na(v) channel organization in multiple excitable tissues.


A-kinase anchoring protein 100 (AKAP100) is localized in multiple subcellular compartments in the adult rat heart.

  • J Yang‎ et al.
  • The Journal of cell biology‎
  • 1998‎

Stimulation of beta-adrenergic receptors activates type I and II cyclic AMP-dependent protein kinase A, resulting in phosphorylation of various proteins in the heart. It has been proposed that PKA II compartmentalization by A-kinase-anchoring proteins (AKAPs) regulates cyclic AMP-dependent signaling in the cell. We investigated the expression and localization of AKAP100 in adult hearts. By immunoblotting, we identified AKAP100 in adult rat and human hearts, and showed that type I and II regulatory (RI and II) subunits of PKA are present in the rat heart. By immunofluorescence and confocal microscopy of rat cardiac myocytes and cryostat sections of rat left ventricle papillary muscles, we localized AKAP100 to the nucleus, sarcolemma, intercalated disc, and at the level of the Z-line. After double immunostaining of transverse cross-sections of the papillary muscles with AKAP100 plus alpha-actinin-specific antibodies or AKAP100 plus ryanodine receptor-specific antibodies, confocal images showed AKAP100 localization at the region of the transverse tubule/junctional sarcoplasmic reticulum. RI is distributed differently from RII in the myocytes. RII, but not RI, was colocalized with AKAP100 in the rat heart. Our studies suggest that AKAP100 tethers PKA II to multiple subcellular compartments for phosphorylation of different pools of substrate proteins in the heart.


Glycogen synthase kinase-3beta is a negative regulator of cardiomyocyte hypertrophy.

  • S Haq‎ et al.
  • The Journal of cell biology‎
  • 2000‎

Hypertrophy is a basic cellular response to a variety of stressors and growth factors, and has been best characterized in myocytes. Pathologic hypertrophy of cardiac myocytes leads to heart failure, a major cause of death and disability in the developed world. Several cytosolic signaling pathways have been identified that transduce prohypertrophic signals, but to date, little work has focused on signaling pathways that might negatively regulate hypertrophy. Herein, we report that glycogen synthase kinase-3beta (GSK-3beta), a protein kinase previously implicated in processes as diverse as development and tumorigenesis, is inactivated by hypertrophic stimuli via a phosphoinositide 3-kinase-dependent protein kinase that phosphorylates GSK-3beta on ser 9. Using adenovirus-mediated gene transfer of GSK-3beta containing a ser 9 to alanine mutation, which prevents inactivation by hypertrophic stimuli, we demonstrate that inactivation of GSK-3beta is required for cardiomyocytes to undergo hypertrophy. Furthermore, our data suggest that GSK-3beta regulates the hypertrophic response, at least in part, by modulating the nuclear/cytoplasmic partitioning of a member of the nuclear factor of activated T cells family of transcription factors. The identification of GSK-3beta as a transducer of antihypertrophic signals suggests that novel therapeutic strategies to treat hypertrophic diseases of the heart could be designed that target components of the GSK-3 pathway.


Muscle ring finger protein-1 inhibits PKC{epsilon} activation and prevents cardiomyocyte hypertrophy.

  • Ranjana Arya‎ et al.
  • The Journal of cell biology‎
  • 2004‎

Much effort has focused on characterizing the signal transduction cascades that are associated with cardiac hypertrophy. In spite of this, we still know little about the mechanisms that inhibit hypertrophic growth. We define a novel anti-hypertrophic signaling pathway regulated by muscle ring finger protein-1 (MURF1) that inhibits the agonist-stimulated PKC-mediated signaling response in neonatal rat ventricular myocytes. MURF1 interacts with receptor for activated protein kinase C (RACK1) and colocalizes with RACK1 after activation with phenylephrine or PMA. Coincident with this agonist-stimulated interaction, MURF1 blocks PKCepsilon translocation to focal adhesions, which is a critical event in the hypertrophic signaling cascade. MURF1 inhibits focal adhesion formation, and the activity of downstream effector ERK1/2 is also inhibited in the presence of MURF1. MURF1 inhibits phenylephrine-induced (but not IGF-1-induced) increases in cell size. These findings establish that MURF1 is a key regulator of the PKC-dependent hypertrophic response and can blunt cardiomyocyte hypertrophy, which may have important implications in the pathophysiology of clinical cardiac hypertrophy.


Muscle-specific RING finger-1 interacts with titin to regulate sarcomeric M-line and thick filament structure and may have nuclear functions via its interaction with glucocorticoid modulatory element binding protein-1.

  • Abigail S McElhinny‎ et al.
  • The Journal of cell biology‎
  • 2002‎

The COOH-terminal A168-170 region of the giant sarcomeric protein titin interacts with muscle-specific RING finger-1 (MURF-1). To investigate the functional significance of this interaction, we expressed green fluorescent protein fusion constructs encoding defined fragments of titin's M-line region and MURF-1 in cardiac myocytes. Upon expression of MURF-1 or its central region (containing its titin-binding site), the integrity of titin's M-line region was dramatically disrupted. Disruption of titin's M-line region also resulted in a perturbation of thick filament components, but, surprisingly, not of the NH2-terminal or I-band regions of titin, the Z-lines, or the thin filaments. This specific phenotype also was caused by the expression of titin A168-170. These data suggest that the interaction of titin with MURF-1 is important for the stability of the sarcomeric M-line region.MURF-1 also binds to ubiquitin-conjugating enzyme-9 and isopeptidase T-3, enzymes involved in small ubiquitin-related modifier-mediated nuclear import, and with glucocorticoid modulatory element binding protein-1 (GMEB-1), a transcriptional regulator. Consistent with our in vitro binding data implicating MURF-1 with nuclear functions, endogenous MURF-1 also was detected in the nuclei of some myocytes. The dual interactions of MURF-1 with titin and GMEB-1 may link myofibril signaling pathways (perhaps including titin's kinase domain) with muscle gene expression.


The NH2 terminus of titin spans the Z-disc: its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity.

  • C C Gregorio‎ et al.
  • The Journal of cell biology‎
  • 1998‎

Titin is a giant elastic protein in vertebrate striated muscles with an unprecedented molecular mass of 3-4 megadaltons. Single molecules of titin extend from the Z-line to the M-line. Here, we define the molecular layout of titin within the Z-line; the most NH2-terminal 30 kD of titin is located at the periphery of the Z-line at the border of the adjacent sarcomere, whereas the subsequent 60 kD of titin spans the entire width of the Z-line. In vitro binding studies reveal that mammalian titins have at least four potential binding sites for alpha-actinin within their Z-line spanning region. Titin filaments may specify Z-line width and internal structure by varying the length of their NH2-terminal overlap and number of alpha-actinin binding sites that serve to cross-link the titin and thin filaments. Furthermore, we demonstrate that the NH2-terminal titin Ig repeats Z1 and Z2 in the periphery of the Z-line bind to a novel 19-kD protein, referred to as titin-cap. Using dominant-negative approaches in cardiac myocytes, both the titin Z1-Z2 domains and titin-cap are shown to be required for the structural integrity of sarcomeres, suggesting that their interaction is critical in titin filament-regulated sarcomeric assembly.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: