2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Laboratory diagnostics of murine blood for detection of mouse cytomegalovirus (MCMV)-induced hepatitis.

  • Felix R Stahl‎ et al.
  • Scientific reports‎
  • 2018‎

Mouse models are important and versatile tools to study mechanisms and novel therapies of human disease in vivo. Both, the number and the complexity of murine models are constantly increasing and modification of genes of interest as well as any exogenous challenge may lead to unanticipated biological effects. Laboratory diagnostics of blood samples provide a comprehensive and rapid screening for multiple organ function and are fundamental to detect human disease. Here, we adapt an array of laboratory medicine-based tests commonly used in humans to establish a platform for standardized, multi-parametric, and quality-controlled diagnostics of murine blood samples. We determined sex-dependent reference intervals of 51 commonly used laboratory medicine tests for samples obtained from the C57BL/6J mouse strain. As a proof of principle, we applied these diagnostic tests in a mouse cytomegalovirus (MCMV) infection model to screen for organ damage. Consistent with histopathological findings, plasma concentrations of liver-specific enzymes were elevated, supporting the diagnosis of a virus-induced hepatitis. Plasma activities of aminotransferases correlated with viral loads in livers at various days after MCMV infection and discriminated infected from non-infected animals. This study provides murine blood reference intervals of common laboratory medicine parameters and illustrates the use of these tests for diagnosis of infectious disease in experimental animals.


Transforming growth factor β-activated kinase 1 transcriptionally suppresses hepatitis B virus replication.

  • Jinke Pang‎ et al.
  • Scientific reports‎
  • 2017‎

Hepatitis B Virus (HBV) replication in hepatocytes is restricted by the host innate immune system and related intracellular signaling pathways. Transforming growth factor β-activated kinase 1 (TAK1) is a key mediator of toll-like receptors and pro-inflammatory cytokine signaling pathways. Here, we report that silencing or inhibition of endogenous TAK1 in hepatoma cell lines leads to an upregulation of HBV replication, transcription, and antigen expression. In contrast, overexpression of TAK1 significantly suppresses HBV replication, while an enzymatically inactive form of TAK1 exerts no effect. By screening TAK1-associated signaling pathways with inhibitors and siRNAs, we found that the MAPK-JNK pathway was involved in TAK1-mediated HBV suppression. Moreover, TAK1 knockdown or JNK pathway inhibition induced the expression of farnesoid X receptor α, a transcription factor that upregulates HBV transcription. Finally, ectopic expression of TAK1 in a HBV hydrodynamic injection mouse model resulted in lower levels of HBV DNA and antigens in both liver and serum. In conclusion, our data suggest that TAK1 inhibits HBV primarily at viral transcription level through activation of MAPK-JNK pathway, thus TAK1 represents an intrinsic host restriction factor for HBV replication in hepatocytes.


Contribution of C1485T mutation in the HBx gene to human and murine hepatocarcinogenesis.

  • Satoru Hagiwara‎ et al.
  • Scientific reports‎
  • 2017‎

Although Hepatitis B virus (HBV) X gene mutations are frequently detected in HBV-related human hepatocellular carcinoma (HCC) patients, causative HBx mutations in the development of HCC have not yet been determined. We herein identified C1485T and C1653T mutations in the HBx gene as independent risk of HCC for HBV through the analysis using serum from chronic hepatitis B patients. We generated transgenic mice expressing wild-type (WT-HBxTg) and mutant (C1485T-HBxTg) HBx to assess the carcinogenic potential of mutated HBx. C1485T-HBxTg mice were more susceptible to diethylnitrosamine-induced hepatocarcinogenesis than WT-HBxTg mice and control non-Tg mice. The promotion of hepatocarcinogenesis in C1485T-HBxTg mice was accompanied by the activation of β-catenin and Jun N-terminal kinase (JNK) signaling pathways as well as the production of reactive oxygen species, whereas the activation of nuclear factor-kappa B in the livers of C1485T-HBxTg mice was attenuated. These results demonstrate that the HBx C1485T mutation contributes to human and murine hepatocarcinogenesis.


A tightly regulated IL-22 response maintains immune functions and homeostasis in systemic viral infection.

  • Panpan Yi‎ et al.
  • Scientific reports‎
  • 2017‎

Interleukin-22 (IL-22) plays an important role in host immunity and tissue homeostasis in infectious and inflammatory diseases. However, the function and regulation of IL-22 in viral infection remain largely unknown. Here, we report that viral infection triggered early IL-22 production from the liver and lymphoid organs. γδ T cells are the main immune cells to produce IL-22 in the liver, a process mediated by the IL-23/phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. In the presence of IL-23, IL-22 production is independent of aryl hydrocarbon receptor (AhR) signaling. In acute and persistent viral infections, IL-22 deficiency resulted in thymic and splenic hypertrophy, while excessive IL-22 induced atrophy in these lymphoid organs. Moreover, IL-22 deficiency enhanced T cell responses to promote viral clearance, but increased IL-22 in vivo decreased T cell numbers and functions in the liver and lymphoid tissues. Together, our findings reveal a significant effect of the IL-23/PI3K/mTORC1 axis on regulating IL-22 production and also identify a novel role of IL-22 in controlling antiviral T cell responses in the non-lymphoid and lymphoid organs during acute and persistent viral infections.


Differential neurodegenerative phenotypes are associated with heterogeneous voiding dysfunction in a coronavirus-induced model of multiple sclerosis.

  • Sanghee Lee‎ et al.
  • Scientific reports‎
  • 2019‎

Patients with multiple sclerosis (MS) develop a variety of lower urinary tract symptoms (LUTS). We previously characterized a murine model of neurogenic bladder dysfunction induced by a neurotropic strain of a coronavirus. In the present study, we further study the role of long-lasting neurodegeneration on the development of neurogenic bladder dysfunction in mice with corona-virus induced encephalitis (CIE). Long-term follow up study revealed three phenotypes of neurodegenerative symptom development: recovery (REC group), chronic progression (C-PRO group) and chronic disease with relapsing-remitting episodes (C-RELAP group). The levels of IL-1β in REC group, IL-10 in C-RELAP group, and IL-1β, IL-6, IL-10 and TNF-α in C-PRO group were diminished in the brain. The levels of TNF-α in REC group and INF-γ, IL-2, TGF-β and TNF-α in the C-PRO group were also diminished in the urinary bladder. Mice in C-RELAP group showed a delayed recovery of voiding function. In vitro contractility studies determined a decreased basal detrusor tone and reduced amplitude of nerve-mediated contractions in C-RELAP group, whereas C-PRO group had elevated muscle-mediated contractions. In conclusion, mice with CIE developed three phenotypes of neurologic impairment mimicking different types of MS progression in humans and showed differential mechanisms driving neurogenic bladder dysfunction.


An orally available, small-molecule interferon inhibits viral replication.

  • Hideyuki Konishi‎ et al.
  • Scientific reports‎
  • 2012‎

Most acute hepatitis C virus (HCV) infections become chronic and some progress to liver cirrhosis or hepatocellular carcinoma. Standard therapy involves an interferon (IFN)-α-based regimen, and efficacy of therapy has been significantly improved by the development of protease inhibitors. However, several issues remain concerning the injectable form and the side effects of IFN. Here, we report an orally available, small-molecule type I IFN receptor agonist that directly transduces the IFN signal cascade and stimulates antiviral gene expression. Like type I IFN, the small-molecule compound induces IFN-stimulated gene (ISG) expression for antiviral activity in vitro and in vivo in mice, and the ISG induction mechanism is attributed to a direct interaction between the compound and IFN-α receptor 2, a key molecule of IFN-signaling on the cell surface. Our study highlights the importance of an orally active IFN-like agent, both as a therapy for antiviral infections and as a potential IFN substitute.


Ivermectin reduces in vivo coronavirus infection in a mouse experimental model.

  • A P Arévalo‎ et al.
  • Scientific reports‎
  • 2021‎

The objective of this study was to test the effectiveness of ivermectin for the treatment of mouse hepatitis virus (MHV), a type 2 family RNA coronavirus similar to SARS-CoV-2. Female BALB/cJ mice were infected with 6,000 PFU of MHV-A59 (group infected, n = 20) or infected and then immediately treated with a single dose of 500 µg/kg ivermectin (group infected + IVM, n = 20) or were not infected and treated with PBS (control group, n = 16). Five days after infection/treatment, the mice were euthanized and the tissues were sampled to assess their general health status and infection levels. Overall, the results demonstrated that viral infection induced typical MHV-caused disease, with the livers showing severe hepatocellular necrosis surrounded by a severe lymphoplasmacytic inflammatory infiltration associated with a high hepatic viral load (52,158 AU), while mice treated with ivermectin showed a better health status with a lower viral load (23,192 AU; p < 0.05), with only a few having histopathological liver damage (p < 0.05). No significant differences were found between the group infected + IVM and control group mice (P = NS). Furthermore, serum transaminase levels (aspartate aminotransferase and alanine aminotransferase) were significantly lower in the treated mice than in the infected animals. In conclusion, ivermectin diminished the MHV viral load and disease in the mice, being a useful model for further understanding this therapy against coronavirus diseases.


Microbicidal actives with virucidal efficacy against SARS-CoV-2 and other beta- and alpha-coronaviruses and implications for future emerging coronaviruses and other enveloped viruses.

  • M Khalid Ijaz‎ et al.
  • Scientific reports‎
  • 2021‎

Mitigating the risk of acquiring coronaviruses including SARS-CoV-2 requires awareness of the survival of virus on high-touch environmental surfaces (HITES) and skin, and frequent use of targeted microbicides with demonstrated efficacy. The data on stability of infectious SARS-CoV-2 on surfaces and in suspension have been put into perspective, as these inform the need for hygiene. We evaluated the efficacies of formulated microbicidal actives against alpha- and beta-coronaviruses, including SARS-CoV-2. The coronaviruses SARS-CoV, SARS-CoV-2, human coronavirus 229E, murine hepatitis virus-1, or MERS-CoV were deposited on prototypic HITES or spiked into liquid matrices along with organic soil loads. Alcohol-, quaternary ammonium compound-, hydrochloric acid-, organic acid-, p-chloro-m-xylenol-, and sodium hypochlorite-based microbicidal formulations were evaluated per ASTM International and EN standard methodologies. All evaluated formulated microbicides inactivated SARS-CoV-2 and other coronaviruses in suspension or on prototypic HITES. Virucidal efficacies (≥ 3 to ≥ 6 log10 reduction) were displayed within 30 s to 5 min. The virucidal efficacy of a variety of commercially available formulated microbicides against SARS-CoV-2 and other coronaviruses was confirmed. These microbicides should be useful for targeted surface and hand hygiene and disinfection of liquids, as part of infection prevention and control for SARS-CoV-2 and emerging mutational variants, and other emerging enveloped viruses.


ANGPTL4 is a potential driver of HCV-induced peripheral insulin resistance.

  • Diana Gomes‎ et al.
  • Scientific reports‎
  • 2023‎

Chronic hepatitis C (CHC) is associated with the development of metabolic disorders, including both hepatic and extra-hepatic insulin resistance (IR). Here, we aimed at identifying liver-derived factor(s) potentially inducing peripheral IR and uncovering the mechanisms whereby HCV can regulate the action of these factors. We found ANGPTL4 (Angiopoietin Like 4) mRNA expression levels to positively correlate with HCV RNA (r = 0.46, p < 0.03) and HOMA-IR score (r = 0.51, p = 0.01) in liver biopsies of lean CHC patients. Moreover, we observed an upregulation of ANGPTL4 expression in two models recapitulating HCV-induced peripheral IR, i.e. mice expressing core protein of HCV genotype 3a (HCV-3a core) in hepatocytes and hepatoma cells transduced with HCV-3a core. Treatment of differentiated myocytes with recombinant ANGPTL4 reduced insulin-induced Akt-Ser473 phosphorylation. In contrast, conditioned medium from ANGPTL4-KO hepatoma cells prevented muscle cells from HCV-3a core induced IR. Treatment of HCV-3a core expressing HepG2 cells with PPARγ antagonist resulted in a decrease of HCV-core induced ANGPTL4 upregulation. Together, our data identified ANGPTL4 as a potential driver of HCV-induced IR and may provide working hypotheses aimed at understanding the pathogenesis of IR in the setting of other chronic liver disorders.


Impaired ADAMTS9 secretion: A potential mechanism for eye defects in Peters Plus Syndrome.

  • Johanne Dubail‎ et al.
  • Scientific reports‎
  • 2016‎

Peters Plus syndrome (PPS), a congenital disorder of glycosylation, results from recessive mutations affecting the glucosyltransferase B3GLCT, leading to congenital corneal opacity and diverse extra-ocular manifestations. Together with the fucosyltransferase POFUT2, B3GLCT adds Glucoseβ1-3Fucose disaccharide to a consensus sequence in thrombospondin type 1 repeats (TSRs) of several proteins. Which of these target proteins is functionally compromised in PPS is unknown. We report here that haploinsufficiency of murine Adamts9, encoding a secreted metalloproteinase with 15 TSRs, leads to congenital corneal opacity and Peters anomaly (persistent lens-cornea adhesion), which is a hallmark of PPS. Mass spectrometry of recombinant ADAMTS9 showed that 9 of 12 TSRs with the O-fucosylation consensus sequence carried the Glucoseβ1-3Fucose disaccharide and B3GLCT knockdown reduced ADAMTS9 secretion in HEK293F cells. Together, the genetic and biochemical findings imply a dosage-dependent role for ADAMTS9 in ocular morphogenesis. Reduced secretion of ADAMTS9 in the absence of B3GLCT is proposed as a mechanism of Peters anomaly in PPS. The functional link between ADAMTS9 and B3GLCT established here also provides credence to their recently reported association with age-related macular degeneration.


Quaternary ammonium-based coating of textiles is effective against bacteria and viruses with a low risk to human health.

  • Philipp Meier‎ et al.
  • Scientific reports‎
  • 2023‎

While the global healthcare system is slowly recovering from the COVID-19 pandemic, new multi-drug-resistant pathogens are emerging as the next threat. To tackle these challenges there is a need for safe and sustainable antiviral and antibacterial functionalized materials. Here we develop an 'easy-to-apply' procedure for the surface functionalization of textiles, rendering them antiviral and antibacterial and assessing the performance of these textiles. A metal-free quaternary ammonium-based coating was applied homogeneously and non-covalently to hospital curtains. Abrasion, durability testing, and aging resulted in little change in the performance of the treated textile. Additionally, qualitative and quantitative antibacterial assays on Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumanii revealed excellent antibacterial activity with a CFU reduction of 98-100% within only 4 h of exposure. The treated curtain was aged 6 months before testing. Similarly, the antiviral activity tested according to ISO-18184 with murine hepatitis virus (MHV) showed > 99% viral reduction with the functionalized curtain. Also, the released active compounds of the coating 24 ± 5 µg mL-1 revealed no acute in vitro skin toxicity (IC50: 95 µg mL-1) and skin sensitization. This study emphasizes the potential of safe and sustainable metal-free textile coatings for the rapid antiviral and antibacterial functionalization of textiles.


A Highly Sensitive Detection System based on Proximity-dependent Hybridization with Computer-aided Affinity Maturation of a scFv Antibody.

  • Zhiheng Wang‎ et al.
  • Scientific reports‎
  • 2018‎

The hepatitis B virus (HBV) infection is a critical health problem worldwide, and HBV preS1 is an important biomarker for monitoring HBV infection. Previously, we found that a murine monoclonal antibody, mAb-D8, targets the preS1 (aa91-107) fragment of HBV. To improve its performance, we prepared the single-chain variable region of mAb-D8 (scFvD8) and constructed the three-dimensional structure of the scFvD8-preS1 (aa91-107) complex by computer modelling. The affinity of scFvD8 was markedly increased by the introduction of mutations L96Tyr to Ser and H98Asp to Ser. Furthermore, a highly sensitive immunosensor was designed based on a proximity-dependent hybridization strategy in which the preS1 antigen competitively reacts with an antibody labelled with DNA, resulting in decreased proximity-dependent hybridization and increased electrochemical signal from the Fc fragment, which can be used for the quantisation of preS1. The results showed a wide detection range from 1 pM to 50 pM with a detection limit of 0.1 pM. The sensitivity and specificity of this immunosensor in clinical serum samples were 100% and 96%, respectively. This study provides a novel system based on proximity-dependent hybridization and the scFv antibody fragment for the rapid quantisation of antigens of interest with a high sensitivity.


Characterization of a core region in the A2UCOE that confers effective anti-silencing activity.

  • Fang Zhang‎ et al.
  • Scientific reports‎
  • 2017‎

We have previously shown that reliability of the A2UCOE in driving transgene expression can be attributed to its resistance to DNA methylation, and its ability to confer this property to linked regulatory sequences. In order to gain a better understanding of how resistance to DNA methylation from the A2UCOE is conferred, and whether the anti-silencing effect from the A2UCOE is confined within a core region, we evaluated the anti-silencing effect of different sub-domains. We found that maximal epigenetic regulatory activity was contained within a 455 bp element derived from the CBX3 region when tested in the context of a lentiviral vector in murine embryonic stem (ES) cells and human inducible pluripotent stem (iPS) cells. This region possessed an active chromatin signature, and operated effectively in cis to protect linked heterologous regulatory elements from methylation, thereby conferring stable transgene expression. Defined UCOE elements may be particularly useful for use in vectors where gene expression is desired in methylation-prone chromatin environments such as those encountered in pluripotent stem cells.


Fate and functional roles of Prominin 1+ cells in liver injury and cancer.

  • Raymond Wu‎ et al.
  • Scientific reports‎
  • 2020‎

Prominin 1 (PROM1) is one of a few clinically relevant progenitor markers in human alcoholic hepatitis (AH) and hepatocellular carcinoma (HCC), and mouse liver tumor initiating stem cell-like cells (TICs). However, the origin, fate and functions of PROM1+ cells in AH and HCC are unknown. Here we show by genetic lineage tracing that PROM1+ cells are derived in part from hepatocytes in AH and become tumor cells in mice with diethyl nitrosamine (DEN)-initiated, Western alcohol diet-promoted liver tumorigenesis. Our RNA sequencing analysis of mouse PROM1+ cells, reveals transcriptomic landscapes indicative of their identities as ductular reaction progenitors (DRPs) and TICs. Indeed, single-cell RNA sequencing reveals two subpopulations of Prom1+ Afp- DRPs and Prom1+ Afp+ TICs in the DEN-WAD model. Integrated bioinformatic analysis identifies Discodin Domain Receptor 1 (DDR1) as a uniquely upregulated and patient-relevant gene in PROM1+ cells in AH and HCC. Translational relevance of DDR1 is supported by its marked elevation in HCC which is inversely associated with patient survival. Further, knockdown of Ddr1 suppresses the growth of TICs and TIC-derived tumor growth in mice. These results suggest the importance of PROM1+ cells in the evolution of liver cancer and DDR1 as a potential driver of this process.


Investigation of COVID-19 comorbidities reveals genes and pathways coincident with the SARS-CoV-2 viral disease.

  • Mary E Dolan‎ et al.
  • Scientific reports‎
  • 2020‎

The emergence of the SARS-CoV-2 virus and subsequent COVID-19 pandemic initiated intense research into the mechanisms of action for this virus. It was quickly noted that COVID-19 presents more seriously in conjunction with other human disease conditions such as hypertension, diabetes, and lung diseases. We conducted a bioinformatics analysis of COVID-19 comorbidity-associated gene sets, identifying genes and pathways shared among the comorbidities, and evaluated current knowledge about these genes and pathways as related to current information about SARS-CoV-2 infection. We performed our analysis using GeneWeaver (GW), Reactome, and several biomedical ontologies to represent and compare common COVID-19 comorbidities. Phenotypic analysis of shared genes revealed significant enrichment for immune system phenotypes and for cardiovascular-related phenotypes, which might point to alleles and phenotypes in mouse models that could be evaluated for clues to COVID-19 severity. Through pathway analysis, we identified enriched pathways shared by comorbidity datasets and datasets associated with SARS-CoV-2 infection.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: