Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 410 papers

IKKγ/NEMO Localization into Multivesicular Bodies.

  • Lisa-Marie Wackernagel‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

The NF-κB pathway is central pathway for inflammatory and immune responses, and IKKγ/NEMO is essential for NF-κB activation. In a previous report, we identified the role of glycogen synthase kinase-3β (GSK-3β) in NF-κB activation by regulating IKKγ/NEMO. Here, we show that NEMO phosphorylation by GSK-3β leads to NEMO localization into multivesicular bodies (MVBs). Using the endosome marker Rab5, we observed localization into endosomes. Using siRNA, we identified the AAA-ATPase Vps4A, which is involved in recycling the ESCRT machinery by facilitating its dissociation from endosomal membranes, which is necessary for NEMO stability and NF-κB activation. Co-immunoprecipitation studies of NEMO and mutated NEMO demonstrated its direct interaction with Vps4A, which requires NEMO phosphorylation. The transfection of cells by a mutated and constitutively active form of Vps4A, Vps4A-E233Q, resulted in the formation of large vacuoles and strong augmentation in NEMO expression compared to GFP-Vps4-WT. In addition, the overexpression of the mutated form of Vps4A led to increased NF-κB activation. The treatment of cells with the pharmacologic V-ATPase inhibitor bafilomycin A led to a dramatic downregulation of NEMO and, in this way, inhibited NF-κB signal transduction. These results reveal an unexpected role for GSK-3β and V-ATPase in NF-κB signaling activation.


Brucella Egresses from Host Cells Exploiting Multivesicular Bodies.

  • Juan Manuel Spera‎ et al.
  • mBio‎
  • 2023‎

Host cell egress is a critical step in the life cycle of intracellular pathogens, especially in microbes capable of establishing chronic infections. The Gram-negative bacterium Brucella belongs to such a group of pathogens. Even though much has been done to understand how Brucella avoids killing and multiplies in its intracellular niche, the mechanism that this bacterium deploys to egress from the cell to complete its cycle has been poorly studied. In the manuscript, we quantify the kinetics of bacterial egress and show that Brucella exploits multivesicular bodies to exit host cells. For the first time, we visualized the process of egress in real time by live video microscopy and showed that a population of intracellular bacteria exit from host cells in vacuoles containing multivesicular body-like features. We observed the colocalization of Brucella with two multivesicular markers, namely, CD63 and LBPA, both during the final stages of the intracellular life cycle and in egressed bacteria. Moreover, drugs that either promote or inhibit multivesicular bodies either increased or decreased the number of extracellular bacteria, respectively. Our results strongly suggest that Brucella hijacks multivesicular bodies to exit the host cells to initiate new infection events. IMPORTANCE How intracellular bacterial pathogens egress from host cells has been poorly studied. This is particularly important because this stage of the infectious cycle can have a strong impact on how the host resolves the infection. Brucella is an intracellular pathogen that infects mammals, including humans, and causes a chronic debilitating illness. The bacterium has evolved a plethora of mechanisms to invade host cells, avoid degradation in the endocytic pathway, and actively multiply within a specialized intracellular compartment. However, how this pathogen exits from infected cells to produce reinfection and complete its life cycle is poorly understood. In the manuscript, we shed some light on the mechanisms that are exploited by Brucella to egress from host cells. We observed for the first time the egress of Brucella from infected cells by time-lapse video microscopy, and we found that the bacterium exits in vesicles containing multivesicular bodies (MVBs) features. Moreover, the drug manipulation of MVBs resulted in the alteration of bacterial egress efficiency. Our results indicate that Brucella hijacks MVBs to exit host cells and that this strongly contributes to the reinfection cycle.


Dual mechanisms specify Doa4-mediated deubiquitination at multivesicular bodies.

  • Caleb Richter‎ et al.
  • The EMBO journal‎
  • 2007‎

Doa4 is a ubiquitin-specific protease in Saccharomyces cerevisiae that deubiquitinates integral membrane proteins sorted into the lumenal vesicles of late-endosomal multivesicular bodies (MVBs). We show that the non-catalytic N terminus of Doa4 mediates its recruitment to endosomes through its association with Bro1, which is one of several highly conserved class E Vps proteins that comprise the core MVB sorting machinery. In turn, Bro1 directly stimulates deubiquitination by interacting with a YPxL motif in the catalytic domain of Doa4. Mutations in either Doa4 or Bro1 that disrupt catalytic activation of Doa4 impair deubiquitination and sorting of MVB cargo proteins and lead to the formation of lumenal MVB vesicles that are predominantly small compared with the vesicles seen in wild-type cells. Thus, by recruiting Doa4 to late endosomes and stimulating its catalytic activity, Bro1 fulfills a novel dual role in coordinating deubiquitination in the MVB pathway.


Isoform-specific targeting of PKA to multivesicular bodies.

  • Michele E Day‎ et al.
  • The Journal of cell biology‎
  • 2011‎

Although RII protein kinase A (PKA) regulatory subunits are constitutively localized to discrete cellular compartments through binding to A-kinase-anchoring proteins (AKAPs), RI subunits are primarily diffuse in the cytoplasm. In this paper, we report a novel AKAP-dependent localization of RIα to distinct organelles, specifically, multivesicular bodies (MVBs). This localization depends on binding to AKAP11, which binds tightly to free RIα or RIα in complex with catalytic subunit (holoenzyme). However, recruitment to MVBs occurs only with the release of PKA catalytic subunit (PKAc). This recruitment is reversed by reassociation with PKAc, and it is disrupted by the presence of AKAP peptides, mutations in the RIα AKAP-binding site, or knockdown of AKAP11. Cyclic adenosine monophosphate binding not only unleashes active PKAc but also leads to the targeting of AKAP11:RIα to MVBs. Therefore, we show that the RIα holoenzyme is part of a signaling complex with AKAP11, in which AKAP11 may direct RIα functionality after disassociation from PKAc. This model defines a new paradigm for PKA signaling.


Structural Insights into AQP2 Targeting to Multivesicular Bodies.

  • Jennifer Virginia Roche‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Vasopressin-dependent trafficking of AQP2 in the renal collecting duct is crucial for the regulation of water homeostasis. This process involves the targeting of AQP2 to the apical membrane during dehydration as well as its removal when hydration levels have been restored. The latter involves AQP2 endocytosis and sorting into multivesicular bodies (MVB), from where it may be recycled, degraded in lysosomes, or released into urine via exosomes. The lysosomal trafficking regulator-interacting protein 5 (LIP5) plays a crucial role in this by coordinating the actions of the endosomal sorting complex required for transport III (ESCRT-III) and vacuolar protein sorting 4 (Vps4) ATPase, resulting in the insertion of AQP2 into MVB inner vesicles. While the interaction between LIP5 and the ESCRT-III complex and Vps4 is well characterized, very little is known about how LIP5 interacts with AQP2 or any other membrane protein cargo. Here, we use a combination of fluorescence spectroscopy and computer modeling to provide a structural model of how LIP5 interacts with human AQP2. We demonstrate that, the AQP2 tetramer binds up to two LIP5 molecules and that the interaction is similar to that seen in the complex between LIP5 and the ESCRT-III component, charged multivesicular body protein 1B (CHMP1B). These studies give the very first structural insights into how LIP5 enables membrane protein insertion into MVB inner vesicles and significantly increase our understanding of the AQP2 trafficking mechanism.


Multivesicular bodies mediate long-range retrograde NGF-TrkA signaling.

  • Mengchen Ye‎ et al.
  • eLife‎
  • 2018‎

The development of neurons in the peripheral nervous system is dependent on target-derived, long-range retrograde neurotrophic factor signals. The prevailing view is that target-derived nerve growth factor (NGF), the prototypical neurotrophin, and its receptor TrkA are carried retrogradely by early endosomes, which serve as TrkA signaling platforms in cell bodies. Here, we report that the majority of retrograde TrkA signaling endosomes in mouse sympathetic neurons are ultrastructurally and molecularly defined multivesicular bodies (MVBs). In contrast to MVBs that carry non-TrkA cargoes from distal axons to cell bodies, retrogradely transported TrkA+ MVBs that arrive in cell bodies evade lysosomal fusion and instead evolve into TrkA+ single-membrane vesicles that are signaling competent. Moreover, TrkA kinase activity associated with retrogradely transported TrkA+ MVBs determines TrkA+ endosome evolution and fate. Thus, MVBs deliver long-range retrograde NGF signals and serve as signaling and sorting platforms in the cell soma, and MVB cargoes dictate their vesicular fate.


Azithromycin induces epidermal differentiation and multivesicular bodies in airway epithelia.

  • Ari Jon Arason‎ et al.
  • Respiratory research‎
  • 2019‎

Azithromycin (Azm) is a macrolide recognized for its disease-modifying effects and reduction in exacerbation of chronic airway diseases. It is not clear whether the beneficial effects of Azm are due to its anti-microbial activity or other pharmacological actions. We have shown that Azm affects the integrity of the bronchial epithelial barrier measured by increased transepithelial electrical resistance. To better understand these effects of Azm on bronchial epithelia we have investigated global changes in gene expression.


Statins affect the presentation of endothelial chemokines by targeting to multivesicular bodies.

  • Johanna Hol‎ et al.
  • PloS one‎
  • 2012‎

In addition to lowering cholesterol, statins are thought to beneficially modulate inflammation. Several chemokines including CXCL1/growth-related oncogene (GRO)-α, CXCL8/interleukin (IL)-8 and CCL2/monocyte chemoattractant protein (MCP)-1 are important in the pathogenesis of atherosclerosis and can be influenced by statin-treatment. Recently, we observed that atorvastatin-treatment alters the intracellular content and subcellular distribution of GRO-α in cultured human umbilical vein endothelial cells (HUVECs). The objective of this study was to investigate the mechanisms involved in this phenomenon.


A family of tetraspans organizes cargo for sorting into multivesicular bodies.

  • Chris MacDonald‎ et al.
  • Developmental cell‎
  • 2015‎

The abundance of cell-surface membrane proteins is regulated by internalization and delivery into intralumenal vesicles (ILVs) of multivesicular bodies (MVBs). Many cargoes are ubiquitinated, allowing access to an ESCRT-dependent pathway into MVBs. Yet how nonubiquitinated proteins, such as glycosylphosphatidylinositol-anchored proteins, enter MVBs is unclear, supporting the possibility of mechanistically distinct ILV biogenesis pathways. Here we show that a family of highly ubiquitinated tetraspan Cos proteins provides a Ub signal in trans, allowing sorting of nonubiquitinated MVB cargo into the canonical ESCRT- and Ub-dependent pathway. Cos proteins create discrete endosomal subdomains that concentrate Ub cargo prior to their envelopment into ILVs, and the activity of Cos proteins is required not only for efficient sorting of canonical Ub cargo but also for sorting nonubiquitinated cargo into MVBs. Expression of these proteins increases during nutrient stress through an NAD(+)/Sir2-dependent mechanism that in turn accelerates the downregulation of a broad range of cell-surface proteins.


Sorting of proteins into multivesicular bodies: ubiquitin-dependent and -independent targeting.

  • F Reggiori‎ et al.
  • The EMBO journal‎
  • 2001‎

Yeast endosomes, like those in animal cells, invaginate their membranes to form internal vesicles. The resulting multivesicular bodies fuse with the vacuole, the lysosome equivalent, delivering the internal vesicles for degradation. We have partially purified internal vesicles and analysed their content. Besides the known component carboxypeptidase S (Cps1p), we identified a polyphosphatase (Phm5p), a presumptive haem oxygenase (Ylr205p/Hmx1p) and a protein of unknown function (Yjl151p/Sna3p). All are membrane proteins, and appear to be cargo molecules rather than part of the vesicle-forming machinery. We show that both Phm5p and Cps1p are ubiquitylated, and that in a doa4 mutant, which has reduced levels of free ubiquitin, Cps1p, Phm5p and Hmx1p are mis-sorted to the vacuolar membrane. Mutation of Lys 6 in the cytoplasmic tail of Phm5p disrupts its sorting, but sorting is restored, even in doa4 cells, by the biosynthetic addition of a single ubiquitin chain. In contrast, Sna3p enters internal vesicles in a ubiquitin-independent manner. Thus, ubiquitin acts as a signal for the partitioning of some, but not all, membrane proteins into invaginating endosomal vesicles.


Hrs and SNX3 functions in sorting and membrane invagination within multivesicular bodies.

  • Véronique Pons‎ et al.
  • PLoS biology‎
  • 2008‎

After internalization, ubiquitinated signaling receptors are delivered to early endosomes. There, they are sorted and incorporated into the intralumenal invaginations of nascent multivesicular bodies, which function as transport intermediates to late endosomes. Receptor sorting is achieved by Hrs--an adaptor--like protein that binds membrane PtdIns3P via a FYVE motif-and then by ESCRT complexes, which presumably also mediate the invagination process. Eventually, intralumenal vesicles are delivered to lysosomes, leading to the notion that EGF receptor sorting into multivesicular bodies mediates lysosomal targeting. Here, we report that Hrs is essential for lysosomal targeting but dispensable for multivesicular body biogenesis and transport to late endosomes. By contrast, we find that the PtdIns3P-binding protein SNX3 is required for multivesicular body formation, but not for EGF receptor degradation. PtdIns3P thus controls the complementary functions of Hrs and SNX3 in sorting and multivesicular body biogenesis.


CIN85 phosphorylation is essential for EGFR ubiquitination and sorting into multivesicular bodies.

  • Barbara Schroeder‎ et al.
  • Molecular biology of the cell‎
  • 2012‎

Ubiquitination of the epidermal growth factor receptor (EGFR) by cbl and its cognate adaptor cbl-interacting protein of 85 kDa (CIN85) is known to play an essential role in directing this receptor to the lysosome for degradation. The mechanisms by which this ubiquitin modification is regulated are not fully defined, nor is it clear where this process occurs. In this study we show that EGFR activation leads to a pronounced src-mediated tyrosine phosphorylation of CIN85 that subsequently influences EGFR ubiquitination. Of importance, phospho-CIN85 interacts with the Rab5-positive endosome, where it mediates the sequestration of the ubiquitinated receptor into multivesicular bodies (MVBs) for subsequent degradation. These findings provide novel insights into how src- kinase-based regulation of a cbl adaptor regulates the fate of the EGFR.


VPS36-Dependent Multivesicular Bodies Are Critical for Plasmamembrane Protein Turnover and Vacuolar Biogenesis.

  • Huei-Jing Wang‎ et al.
  • Plant physiology‎
  • 2017‎

Most eukaryotic cells target ubiquitinated plasma membrane (PM) proteins for vacuolar degradation in response to environmental and developmental cues. This process involves endosomal sorting complexes required for transport (ESCRT). However, little is known about the cellular mechanisms of ESCRTs in plants. Here, we studied the function of one ESCRT-II component, VPS36, which shows ubiquitin-binding activity and may form a putative ESCRT-II with VPS22 and VPS25 in Arabidopsis (Arabidopsis thaliana). Recessive mutation of the ubiquitously expressed VPS36 causes multiple defects, including delayed embryogenesis, defective root elongation, and limited expansion of cotyledons, and these effects can be complemented by its genomic DNA. Abnormal intracellular compartments containing several membrane transporters, including members of the PIN-FORMEDs, AUXIN RESISTANT 1, and PIP1 families, were found in vps36-1 plants. Employing a genetic approach to cross vps36-1/+ with transgenic plants harboring various fluorescent protein-tagged organelle markers, as well as fluorescent probe and ultrastructural approaches, revealed PM proteins in microsomal fractions from vps36-1 seedlings and demonstrated that VPS36 is critical for forming multivesicular bodies and vacuolar biogenesis for protein degradation. Our study shows that functional VPS36 is essential for a proper endosomal sorting pathway and for vacuolar biogenesis in Arabidopsis.


Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells.

  • M Kleijmeer‎ et al.
  • The Journal of cell biology‎
  • 2001‎

Immature dendritic cells (DCs) sample their environment for antigens and after stimulation present peptide associated with major histocompatibility complex class II (MHC II) to naive T cells. We have studied the intracellular trafficking of MHC II in cultured DCs. In immature cells, the majority of MHC II was stored intracellularly at the internal vesicles of multivesicular bodies (MVBs). In contrast, DM, an accessory molecule required for peptide loading, was located predominantly at the limiting membrane of MVBs. After stimulation, the internal vesicles carrying MHC II were transferred to the limiting membrane of the MVB, bringing MHC II and DM to the same membrane domain. Concomitantly, the MVBs transformed into long tubular organelles that extended into the periphery of the cells. Vesicles that were formed at the tips of these tubules nonselectively incorporated MHC II and DM and presumably mediated transport to the plasma membrane. We propose that in maturing DCs, the reorganization of MVBs is fundamental for the timing of MHC II antigen loading and transport to the plasma membrane.


Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease.

  • Maria Filimonenko‎ et al.
  • The Journal of cell biology‎
  • 2007‎

The endosomal sorting complexes required for transport (ESCRTs) are required to sort integral membrane proteins into intralumenal vesicles of the multivesicular body (MVB). Mutations in the ESCRT-III subunit CHMP2B were recently associated with frontotemporal dementia and amyotrophic lateral sclerosis (ALS), neurodegenerative diseases characterized by abnormal ubiquitin-positive protein deposits in affected neurons. We show here that autophagic degradation is inhibited in cells depleted of ESCRT subunits and in cells expressing CHMP2B mutants, leading to accumulation of protein aggregates containing ubiquitinated proteins, p62 and Alfy. Moreover, we find that functional MVBs are required for clearance of TDP-43 (identified as the major ubiquitinated protein in ALS and frontotemporal lobar degeneration with ubiquitin deposits), and of expanded polyglutamine aggregates associated with Huntington's disease. Together, our data indicate that efficient autophagic degradation requires functional MVBs and provide a possible explanation to the observed neurodegenerative phenotype seen in patients with CHMP2B mutations.


Interactions between Nef and AIP1 proliferate multivesicular bodies and facilitate egress of HIV-1.

  • Luciana J Costa‎ et al.
  • Retrovirology‎
  • 2006‎

Nef is an accessory protein of primate lentiviruses, HIV-1, HIV-2 and SIV. Besides removing CD4 and MHC class I from the surface and activating cellular signaling cascades, Nef also binds GagPol during late stages of the viral replicative cycle. In this report, we investigated further the ability of Nef to facilitate the replication of HIV-1.


Neddylation of Coro1a determines the fate of multivesicular bodies and biogenesis of extracellular vesicles.

  • Xuefeng Fei‎ et al.
  • Journal of extracellular vesicles‎
  • 2021‎

Multivesicular bodies (MVBs) fuse with not only the plasma membranes to release extracellular vesicles (EVs) but also lysosomes for degradation. Rab7 participates in the lysosomal targeting of MVBs. However, the proteins on MVB that directly bind Rab7, causing MVB recruitment of Rab7 remain unidentified. Here, we show that Coro1a undergoes neddylation modification at K233 by TRIM4. Neddylated Coro1a is associated with the MVB membrane and facilitates MVB recruitment and activation of Rab7 by directly binding Rab7. Subsequently, MVBs are targeted to lysosomes for degradation in a Rab7-dependent manner, leading to reduced EV secretion. Furthermore, a decrease in neddylated Coro1a enhances the production of tumour EVs, thereby promoting tumour progression, indicating that neddylated Coro1a is an ideal target for the regulation of EV biogenesis. Altogether, our data identify a novel substrate of neddylation and reveal an unknown mechanism for MVB recruitment of Rab7, thus providing new insight into the regulation of EV biogenesis.


NMR studies on the interactions between yeast Vta1 and Did2 during the multivesicular bodies sorting pathway.

  • Jie Shen‎ et al.
  • Scientific reports‎
  • 2016‎

As an AAA-ATPase, Vps4 is important for function of multivesicular bodies (MVB) sorting pathway, which involves in cellular phenomena ranging from receptor down-regulation to viral budding to cytokinesis. The activity of Vps4 is stimulated by the interactions between Vta1 N-terminus (named as Vta1NTD) and Did2 fragment (176-204 aa) (termed as Did2176-204) or Vps60 (128-186 aa) (termed as Vps60128-186). The structural basis of how Vta1NTD binds to Did2176-204 is still unclear. To address this, in this report, the structure of Did2176-204 in complex with Vta1NTD was determined by NMR techniques, demonstrating that Did2176-204 interacts with Vta1NTD through its helix α6' extending over the 2nd and the 3rd α-helices of Vta1NTD microtubule interacting and transport 1 (MIT1) domain. The residues within Did2176-204 helix α6' in the interface make up of an amino acid sequence as E192'xxL195'xxR198'L199'xxL202'R203', identical to type 1 MIT-interacting motif (MIM1) (D/E)xxLxxRLxxL(K/R) of CHMP1A180-196 observed in Vps4-CHMP1A complex structure, indicating that Did2 binds to Vta1NTD through canonical MIM1 interactions. Moreover, the Did2 binding does not result in Vta1NTD significant conformational changes, revealing that Did2, similar to Vps60, enhances Vta1 stimulation of Vps4 ATPase activity in an indirect manner.


EhADH112 is a Bro1 domain-containing protein involved in the Entamoeba histolytica multivesicular bodies pathway.

  • Cecilia Bañuelos‎ et al.
  • Journal of biomedicine & biotechnology‎
  • 2012‎

EhADH112 is an Entamoeba histolytica Bro1 domain-containing protein, structurally related to mammalian ALIX and yeast BRO1, both involved in the Endosomal Sorting Complexes Required for Transport (ESCRT)-mediated multivesicular bodies (MVB) biogenesis. Here, we investigated an alternative role for EhADH112 in the MVB protein trafficking pathway by overexpressing 166 amino acids of its N-terminal Bro1 domain in trophozoites. Trophozoites displayed diminished phagocytosis rates and accumulated exogenous Bro1 at cytoplasmic vesicles which aggregated into aberrant complexes at late stages of phagocytosis, probably preventing EhADH112 function. Additionally, the existence of a putative E. histolytica ESCRT-III subunit (EhVps32) presumably interacting with EhADH112, led us to perform pull-down experiments with GST-EhVps32 and [(35)S]-labeled EhADH112 or EhADH112 derivatives, confirming EhVps32 binding to EhADH112 through its Bro1 domain. Our overall results define EhADH112 as a novel member of ESCRT-accessory proteins transiently present at cellular surface and endosomal compartments, probably contributing to MVB formation during phagocytosis.


Essential roles of class E Vps proteins for sorting into multivesicular bodies in Schizosaccharomyces pombe.

  • Tomoko Iwaki‎ et al.
  • Microbiology (Reading, England)‎
  • 2007‎

The multivesicular body (MVB) sorting pathway is required for a number of biological processes, including downregulation of cell-surface proteins and protein sorting into the vacuolar lumen. The function of this pathway requires endosomal sorting complexes required for transport (ESCRT) composed of class E vacuolar protein sorting (Vps) proteins in Saccharomyces cerevisiae, many of which are conserved in Schizosaccharomyces pombe. Of these, sst4/vps27 (homologous to VPS27) and sst6 (similar to VPS23) have been identified as suppressors of sterility in ste12Delta (sst), although their functions have not been uncovered to date. In this report, these two sst genes are shown to be required for vacuolar sorting of carboxypeptidase Y (CPY) and an MVB marker, the ubiquitin-GFP-carboxypeptidase S (Ub-GFP-CPS) fusion protein, despite the lack of the ubiquitin E2 variant domain in Sst6p. Disruption mutants of a variety of other class E vps homologues also had defects in sorting of CPY and Ub-GFP-CPS. Sch. pombe has a mammalian AMSH homologue, sst2. Phenotypic analyses suggested that Sst2p is a class E Vps protein. Taken together, these results suggest that sorting into multivesicular bodies is dependent on class E Vps proteins, including Sst2p, in Sch. pombe.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: