Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

mtROS-mediated Akt/AMPK/mTOR pathway was involved in Copper-induced autophagy and it attenuates Copper-induced apoptosis in RAW264.7 mouse monocytes.

  • Qin Luo‎ et al.
  • Redox biology‎
  • 2021‎

Copper (Cu) is a trace element necessary in animals as well as human beings. However, excessive Cu is toxic to immunocytes, but the precise mechanism is largely unclear so far. This work was conducted aiming to examine the Cu-mediated autophagy mechanism together with its role in Cu toxicology in RAW264.7 cells. Here, we demonstrated that CuSO4 reduced the cell viability depending on its dose. CuSO4 could obviously increase autophagy in RAW264.7 cells. According to the obtained results, CuSO4 induced autophagy through Akt/AMPK/mTOR pathway which characterized by down regulation of p-Akt (Ser473)/Akt, p-mTOR/mTOR, p-ULK1(Ser757)/ULK1 and subsequent up-regulation of p-AMPKα/AMPKα and p-ULK1(Ser555)/ULK1. Furthermore, CuSO4 significantly induced the production of mitochondrial reactive oxygen species (mtROS). In addition, CuSO4-mediated apoptosis and autophagy might be suppressed through suppressing mtROS generation by exposure to Mito-TEMPO. Intriguingly, autophagy promotion with rapamycin could decrease the apoptosis and the inhibition of autophagy with knock down Atg5 could enhance the apoptosis induced by CuSO4. Moreover, our results suggested that mtROS is the original cause in CuSO4-induced apoptosis and autophagy. Additionally, CuSO4 induced autophagy through mtROS-dependent Akt/AMPK/mTOR signalling pathwayin RAW264.7 cells. Moreover, autophagy activation might potentially generate a protection mechanism for improving CuSO4-induced RAW264.7 cell apoptosis.


Targeted 25-hydroxyvitamin D3 1α-hydroxylase adoptive gene therapy ameliorates dss-induced colitis without causing hypercalcemia in mice.

  • Bo Li‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2015‎

Systemic 1,25(OH)2D3 treatment ameliorating murine inflammatory bowel diseases (IBD) could not be applied to patients because of hypercalcemia. We tested the hypothesis that increasing 1,25(OH)2D3 synthesis locally by targeting delivery of the 1α-hydroxylase gene (CYP27B1) to the inflamed bowel would ameliorate IBD without causing hypercalcemia. Our targeting strategy is the use of CD11b(+)/Gr1(+) monocytes as the cell vehicle and a macrophage-specific promoter (Mac1) to control CYP27B1 expression. The CD11b(+)/Gr1(+) monocytes migrated initially to inflamed colon and some healthy tissues in dextran sulfate sodium (DSS) colitis mice; however, only the migration of monocytes to the inflamed colon was sustained. Adoptive transfer of Gr1(+) monocytes did not cause hepatic injury. Infusion of Mac1-CYP27B1-modified monocytes increased body weight gain, survival, and colon length, and expedited mucosal regeneration. Expression of pathogenic Th17 and Th1 cytokines (interleukin (IL)-17a and interferon (IFN)-α) was decreased, while expression of protective Th2 cytokines (IL-5 and IL-13) was increased, by the treatment. This therapy also enhanced tight junction gene expression in the colon. No hypercalcemia occurred following this therapy. In conclusion, we have for the first time obtained proof-of-principle evidence for a novel monocyte-based adoptive CYP27B1 gene therapy using a mouse IBD model. This strategy could be developed into a novel therapy for IBD and other autoimmune diseases.


Induced CD10 expression during monocyte-to-macrophage differentiation identifies a unique subset of macrophages in pancreatic ductal adenocarcinoma.

  • Xin Huang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Tumor associated macrophages (TAMs) promoted pancreatic ductal adenocarcinoma (PDAC) initiation and progression. In this study we aimed to evaluate CD10 expression by monocytes/macrophages and its clinical significance in PDAC.


Respiratory macrophages regulate CD4 T memory responses to mucosal immunization with recombinant adenovirus-based vaccines.

  • Elizabeth Acosta-Ramirez‎ et al.
  • Cellular immunology‎
  • 2016‎

Respiratory immunization is an attractive way to generate systemic and mucosal protective memory responses that are required for preventing mucosally transmitted infections. However, the molecular and cellular mechanisms for controlling memory T cell responses remain incompletely understood. In this study, we investigated the role of respiratory macrophage (MΦ) in regulating CD4 T cell responses to recombinant adenovirus-based (rAd) vaccines. We demonstrated that rAd intranasal (i.n.) vaccination induced migration and accumulation of respiratory MΦ and circulatory monocytes in the mediastinal lymph nodes and lung parenchyma. Under the influence of respiratory MΦ CD4 T cells exhibited slow proliferation kinetics and an increased tendency of generating central memory, as opposed to effector memory, CD4 T cell responses in vitro and in vivo. Correspondingly, depletion of MΦ using clodronate-containing liposome prior to i.n. immunization significantly enhanced CD4 T cell proliferation and increased the frequency of CD4 memory T cells in the airway lumen, demonstrating that MΦ initially serve as a negative regulator in limiting generation of mucosal tissue-resident memory CD4 T cells. However, clodronate-containing liposome delivery following i.n. immunization markedly reduced the frequencies of memory CD4 T cells in the airway lumen and spleen, indicating that respiratory MΦ and potentially circulating monocytes are critically required for maintaining long-term memory CD4 T cells. Collectively, our data demonstrate that rAd-induced mucosal CD4 T memory responses are regulated by respiratory MΦ and/or monocytes at multiple stages.


Circulating myeloid-derived MMP8 in stress susceptibility and depression.

  • Flurin Cathomas‎ et al.
  • Nature‎
  • 2024‎

Psychosocial stress has profound effects on the body, including the immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3, the underlying mechanisms are not well understood. Here we show that expression of a circulating myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is increased in the serum of humans with MDD as well as in stress-susceptible mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), as well as altered social behaviour. Using a combination of mass cytometry and single-cell RNA sequencing, we performed high-dimensional phenotyping of immune cells in circulation and in the brain and demonstrate that peripheral monocytes are strongly affected by stress. In stress-susceptible mice, both circulating monocytes and monocytes that traffic to the brain showed increased Mmp8 expression following chronic social defeat stress. We further demonstrate that circulating MMP8 directly infiltrates the NAc parenchyma and controls the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.


Oxidative stress induces monocyte-to-myofibroblast transdifferentiation through p38 in pancreatic ductal adenocarcinoma.

  • Xin Huang‎ et al.
  • Clinical and translational medicine‎
  • 2020‎

Cancer-associated fibroblasts (CAFs) are among the most prominent cells during the desmoplastic reaction in pancreatic ductal adenocarcinoma (PDAC). However, CAFs are heterogeneous and the precise origins are not fully elucidated. This study aimed to explore whether monocytes can transdifferentiate into fibroblasts in PDAC and evaluate the clinical significance of this event.


IL-17 production by tissue-resident MAIT cells is locally induced in children with pneumonia.

  • Bingtai Lu‎ et al.
  • Mucosal immunology‎
  • 2020‎

Community-acquired pneumonia (CAP) contributes substantially to morbidity and mortality in children under the age of 5 years. In examining bronchoalveolar lavages (BALs) of children with CAP, we found that interleukin-17 (IL-17) production was significantly increased in severe CAP. Immune profiling showed that mucosal-associated invariant T (MAIT) cells from the BALs, but not blood, of CAP patients actively produced IL-17 (MAIT17). Single-cell RNA-sequencing revealed that MAIT17 resided in a BAL-resident PLZFhiCD103+ MAIT subset with high expression of hypoxia-inducible factor 1α (HIF-1α), reflecting the hypoxic state of the inflamed tissue. CAP BALs also contained a T-bet+ MAIT1 subset and a novel DDIT3+ (DNA damage-inducible transcript 3-positive) MAIT subset with low expression of HIF1A. Furthermore, MAIT17 differed from T-helper type 17 (Th17) cells in the expression of genes related to tissue location, innateness, and cytotoxicity. Finally, we showed that BAL monocytes were hyper-inflammatory and elicited differentiation of MAIT17. Thus, tissue-resident MAIT17 cells are induced at the infected respiratory mucosa, likely influenced by inflammatory monocytes, and contribute to IL-17-mediated inflammation during CAP.


Peripheral immune-derived matrix metalloproteinase promotes stress susceptibility.

  • Scott Russo‎ et al.
  • Research square‎
  • 2023‎

Psychosocial stress has profound effects on the body, including the peripheral immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3,4,5, the underlying mechanisms are not well understood. Here we show that a peripheral myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is elevated in serum of subjects with MDD as well as in stress-susceptible (SUS) mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), thereby altering social behaviour. Using a combination of mass cytometry and single-cell RNA-sequencing, we performed high-dimensional phenotyping of immune cells in circulation and brain and demonstrate that peripheral monocytes are strongly affected by stress. Both peripheral and brain-infiltrating monocytes of SUS mice showed increased Mmp8 expression following CSDS. We further demonstrate that peripheral MMP8 directly infiltrates the NAc parenchyma to control the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a novel mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.


Coagulation factor V is a T-cell inhibitor expressed by leukocytes in COVID-19.

  • Jun Wang‎ et al.
  • iScience‎
  • 2022‎

Clotting Factor V (FV) is primarily synthesized in the liver and when cleaved by thrombin forms pro-coagulant Factor Va (FVa). Using whole blood RNAseq and scRNAseq of peripheral blood mononuclear cells, we find that FV mRNA is expressed in leukocytes, and identify neutrophils, monocytes, and T regulatory cells as sources of increased FV in hospitalized patients with COVID-19. Proteomic analysis confirms increased FV in circulating neutrophils in severe COVID-19, and immunofluorescence microscopy identifies FV in lung-infiltrating leukocytes in COVID-19 lung disease. Increased leukocyte FV expression in severe disease correlates with T-cell lymphopenia. Both plasma-derived and a cleavage resistant recombinant FV, but not thrombin cleaved FVa, suppress T-cell proliferation in vitro. Anticoagulants that reduce FV conversion to FVa, including heparin, may have the unintended consequence of suppressing the adaptive immune system.


Deubiquitination of proteasome subunits by OTULIN regulates type I IFN production.

  • Panfeng Tao‎ et al.
  • Science advances‎
  • 2021‎

OTULIN is a linear deubiquitinase that negatively regulates the nuclear factor κB (NF-κB) signaling pathway. Patients with OTULIN deficiency, termed as otulipenia or OTULIN-related autoinflammatory syndrome, present with early onset severe systemic inflammation due to increased NF-κB activation. We aimed to investigate additional disease mechanisms of OTULIN deficiency. Our study found a remarkable activation of type I interferon (IFN-I) signaling in whole blood, peripheral blood mononuclear cells, monocytes, and serum from patients with OTULIN deficiency. We observed similar immunologic findings in OTULIN-deficient cell lines generated by CRISPR. Mechanistically, we identified proteasome subunits as substrates of OTULIN deubiquitinase activity and demonstrated proteasome dysregulation in OTULIN-deficient cells as the cause of IFN-I activation. These results reveal an important role of linear ubiquitination in the regulation of proteasome function and suggest a link in the pathogenesis of proteasome-associated autoinflammatory syndromes and OTULIN deficiency.


Identification of an IL-1 receptor mutation driving autoinflammation directs IL-1-targeted drug design.

  • Yusha Wang‎ et al.
  • Immunity‎
  • 2023‎

The interleukin 1 (IL-1) pathway signals through IL-1 receptor type 1 (IL-1R1) and emerges as a central mediator for systemic inflammation. Aberrant IL-1 signaling leads to a range of autoinflammatory diseases. Here, we identified a de novo missense variant in IL-1R1 (p.Lys131Glu) in a patient with chronic recurrent multifocal osteomyelitis (CRMO). Patient PBMCs showed strong inflammatory signatures, particularly in monocytes and neutrophils. The p.Lys131Glu substitution affected a critical positively charged amino acid, which disrupted the binding of the antagonist ligand, IL-1Ra, but not IL-1α or IL-1β. This resulted in unopposed IL-1 signaling. Mice with a homologous mutation exhibited similar hyperinflammation and greater susceptibility to collagen antibody-induced arthritis, accompanied with pathological osteoclastogenesis. Leveraging the biology of the mutation, we designed an IL-1 therapeutic, which traps IL-1β and IL-1α, but not IL-1Ra. Collectively, this work provides molecular insights and a potential drug for improved potency and specificity in treating IL-1-driven diseases.


Hepatitis B virus particles activate B cells through the TLR2-MyD88-mTOR axis.

  • Qian Li‎ et al.
  • Cell death & disease‎
  • 2021‎

Host immune control plays a pivotal role in resolving primary hepatitis-B-virus (HBV) infections. The complex interaction between HBV and host immune cells, however, remains unclear. In this study, the transcriptional profiling of specimens from animals infected with woodchuck hepatitis virus (WHV) indicated TLR2 mRNA accumulation as most strongly impacted during WHV infection resolution as compared to other mRNAs. Analysis of blood transcriptional modules demonstrated that monocytes and B-cells were the predominantly activated cell types in animals that showed resolution of infection, which was similar to the response of TLR2-stimulated PBMCs. Further investigation of TLR2-stimulated B-cells pointed at interactions between activated TLR signaling, Akt-mTOR, and glucose metabolic pathways. Moreover, analysis of B-cells from Tlr2-/-, Trif-/-, Myd88-/-, and Trif/Myd88-/- mice challenged with HBV particles indicated B-cell function and glucose metabolism alterations is TLR2-MyD88-mTOR axis dependent. Overall, our study implicates B-cell TLR2 activation in HBV infection resolution.


Inactivation of Semicarbazide-Sensitive Amine Oxidase Stabilizes the Established Atherosclerotic Lesions via Inducing the Phenotypic Switch of Smooth Muscle Cells.

  • Ya Peng‎ et al.
  • PloS one‎
  • 2016‎

Given that the elevated serum semicarbazide-sensitive amine oxidase (SSAO) activity is associated with the severity of carotid atherosclerosis in clinic, the current study aims to investigate whether SSAO inactivation by semicarbazide is beneficial for established atherosclerotic lesions in LDLr knockout mice on a high-fat/high- cholesterol Western-type diet or after dietary lipid lowering. Despite no impact on plasma total cholesterol levels, the infiltration of circulating monocytes into peripheral tissues, and the size of atherosclerotic lesions, abrogation of SSAO activity resulted in the stabilization of established lesions as evidenced by the increased collagen contents under both conditions. Moreover, SSAO inactivation decreased Ly6Chigh monocytosis and lesion macrophage contents in hypercholesterolemic mice, while no effect was observed in mice after normalization of hypercholesterolemia by dietary lipid lowering. Strikingly, abrogation of SSAO activity significantly increased not only the absolute numbers of smooth muscle cells (SMCs), but also the percent of SMCs with a synthetic phenotype in established lesions of mice regardless of plasma cholesterol levels. Overall, our data indicate that SSAO inactivation in vivo stabilizes the established plaques mainly via inducing the switch of SMCs from a contractile to a synthetic phenotype. Targeting SSAO activity thus may represent a potential treatment for patients with atherosclerosis.


Deciphering the Formulation Secret Underlying Chinese Huo-Clearing Herbal Drink.

  • Jianan Wang‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Herbal teas or herbal drinks are traditional beverages that are prevalent in many cultures around the world. In Traditional Chinese Medicine, an herbal drink infused with different types of medicinal plants is believed to reduce the 'Shang Huo', or excessive body heat, a status of sub-optimal health. Although it is widely accepted and has a very large market, the underlying science for herbal drinks remains elusive. By studying a group of herbs for drinks, including 'Gan' (Glycyrrhiza uralensis Fisch. Ex DC.), 'Ju' (Dendranthema morifolium (Ramat.) Tzvelev), 'Bu' (Microcos paniculata L.), 'Jin' (Lonicera japonica Thunb.), 'Xia' (Prunella vulgaris L.), and 'Ji' (Plumeria rubra L.), the long-term jargon is connected with the inflammation of modern immunology through a few pro-inflammatory markers. In vitro studies have indicated that cellular inflammation is lowered by Ju and Jin either individually or synergistically with Gan. Among all herbs, only Gan detoxicated cellular toxicity of Bu in a dose dependent manner. The synergistic formulation of Ju and Gan, or Jin and Gan, in a reduction of Shang Huo, was tested in vivo. Both combinations exhibited a lower percentage of neutrophils, monocytes, and CD4+/CD8+ ratio in the blood, as well as inflammatory cytokines. Furthermore, body weight in the combinatory groups was more stable than treatments using single herbs. The combination of old traditional oriental methods with Western science logistics, has resulted in the formulation of different herbs into one concoction for the use of detoxification and synergism.


High-dimensional analysis reveals an immune atlas and novel neutrophil clusters in the lungs of model animals with Actinobacillus pleuropneumoniae-induced pneumonia.

  • Na Li‎ et al.
  • Veterinary research‎
  • 2023‎

Due to the increase in bacterial resistance, improving the anti-infectious immunity of the host is rapidly becoming a new strategy for the prevention and treatment of bacterial pneumonia. However, the specific lung immune responses and key immune cell subsets involved in bacterial infection are obscure. Actinobacillus pleuropneumoniae (APP) can cause porcine pleuropneumonia, a highly contagious respiratory disease that has caused severe economic losses in the swine industry. Here, using high-dimensional mass cytometry, the major immune cell repertoire in the lungs of mice with APP infection was profiled. Various phenotypically distinct neutrophil subsets and Ly-6C+ inflammatory monocytes/macrophages accumulated post-infection. Moreover, a linear differentiation trajectory from inactivated to activated to apoptotic neutrophils corresponded with the stages of uninfected, onset, and recovery of APP infection. CD14+ neutrophils, which mainly increased in number during the recovery stage of infection, were revealed to have a stronger ability to produce cytokines, especially IL-10 and IL-21, than their CD14- counterparts. Importantly, MHC-II+ neutrophils with antigen-presenting cell features were identified, and their numbers increased in the lung after APP infection. Similar results were further confirmed in the lungs of piglets infected with APP and Klebsiella pneumoniae infection by using a single-cell RNA-seq technique. Additionally, a correlation analysis between cluster composition and the infection process yielded a dynamic and temporally associated immune landscape where key immune clusters, including previously unrecognized ones, marked various stages of infection. Thus, these results reveal the characteristics of key neutrophil clusters and provide a detailed understanding of the immune response to bacterial pneumonia.


Aberrant Glycosylation Augments the Immuno-Stimulatory Activities of Soluble Calreticulin.

  • Fang-Yuan Gong‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Calreticulin (CRT), a luminal resident calcium-binding glycoprotein of the cell, is a tumor-associated antigen involved in tumorigenesis and also an autoantigen targeted by autoantibodies found in patients with various autoimmune diseases. We have previously shown that prokaryotically expressed recombinant murine CRT (rCRT) exhibits strong stimulatory activities against monocytes/macrophages in vitro and potent immunogenicity in vivo, which is partially attributable to self-oligomerization of soluble rCRT. However, even in oligomerized form native CRT (nCRT) isolated from mouse liver is much less active than rCRT, arguing against the possibility that self-oligomerization alone would license potent pro-inflammatory properties to nCRT. Since rCRT differs from nCRT in its lack of glycosylation, we wondered if aberrant glycosylation of eukaryotically expressed CRT (eCRT) would significantly enhance its immunological activity. In the present study, tunicamycin, an N-glycosyltransferase inhibitor, was employed to treat CHO cells (CHO-CRT) stably expressing full-length recombinant mouse CRT in secreted form for preparation of aberrantly glycosylated eCRT (tun-eCRT). Our biochemical and immunological analysis results indicate that eCRT produced by CHO-CRT cells is similar to nCRT in terms of glycosylation level, lack of self-oligomerization, relatively poor immunogenicity and weak macrophage-stimulatory activity, while tun-eCRT shows reduced glycosylation yet much enhanced ability to elicit specific humoral responses in mice and TNF-α and nitric oxide production by macrophages in vitro. Given that abberant glycosylation of proteins is a hallmark of cancer cells and also related to the development of autoimmune disorders in humans, our data may provide useful clues for better understanding of potentiating roles of dysregulated glycosylation of molecules such as CRT in tumorigenesis and autoimmunity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: