Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 113 papers

SP70-Targeted Imaging for the Early Detection of Lung Adenocarcinoma.

  • Jian Xu‎ et al.
  • Scientific reports‎
  • 2020‎

NJ001 is a monoclonal antibody that can specifically recognize the SP70 antigen on lung adenocarcinoma cells. The goal of this study was to explore its utility in targeted imaging. Subcutaneous xenograft and orthotopic lung tumor implantation BALB/c mouse models were established. Near-infrared fluorescent CF750-labeled NJ001 was injected into two tumor mouse models. Mice that received orthotopic lung tumor implantation were also injected with NJ001-conjugated nanomagnetic beads intravenously, and then underwent micro-CT scanning. Meanwhile, mice with lung tumor were intravenously injected with normal saline and bare nanomagnetic beads as a control. Fluorescence could be monitored in the mice detected by anti-SP70 fluorescence imaging, which was consistent with tumor burden. Signal intensities detected with SP70-targeted micro-CT scans were greater than those in control mice. More importantly, orthotopic tumor lesions could be found on the fourth week with SP70-targeted imaging, which was 2 weeks earlier than detection in the control. Our results suggest that SP70 is a promising target for molecular imaging, and molecularly targeted imaging with an NJ001-labeled probe could be applied for the early detection of lung adenocarcinoma.


Gallium-68-Labelled Indocyanine Green as a Potential Liver Reserve Imaging Agent.

  • Yuxiao Xia‎ et al.
  • Contrast media & molecular imaging‎
  • 2019‎

This work evaluated the potential of 68Ga-labelledNOTA-ICG (1,4,7-triazacyclononane-1,4,7-triacetic acid indocyanine green) for liver reserve imaging.


Acoustic triggered nanobomb for US imaging guided sonodynamic therapy and activating antitumor immunity.

  • Mengmeng Li‎ et al.
  • Drug delivery‎
  • 2022‎

We fabricated an ultrasound activated 'nanobomb' as a noninvasive and targeted physical therapeutic strategy for sonodynamic therapy and priming cancer immunotherapy. This 'nanobomb' was rationally designed via the encapsulation of indocyanine green (ICG) and perfluoropentane (PFP) into cRGD peptide-functionalized nano-liposome. The resulting Lip-ICG-PFP-cRGD nanoparticle linked with cRGD peptide could actively targeted ID8 and TC-1 cells and elicits ROS-mediated apoptosis after triggered by low-intensity focused ultrasound (LIFU). Moreover, the phase change of PFP (from droplets to microbubbles) under LIFU irradiation can produce a large number of microbubbles, which act as intra-tumoral bomber and can detonate explode tumor cells by acoustic cavitation effect. Instant necrosis of tumor cells further induces the release of biologically active damage-associated molecular patterns (DAMPs) to facilitate antitumor immunity. More important, the 'nanobomb' in combination with anti-PD-1checkpoint blockade therapy can significantly improve the antitumor efficacy in a subcutaneous model. In addition, the liposomes may also be used as an imaging probe for ultrasound (US) imaging after being irradiated with LIFU. In summary, the US imaging-guided, LIFU activated ROS production and explosion 'nanobomb' might significantly improve the antitumor efficacy and overcome drug resistance through combination of SDT and immunotherapy, we believe that this is a promising approach for targeted therapy of solid tumor including ovarian cancer.


Photodynamic Therapy and Multi-Modality Imaging of Up-Conversion Nanomaterial Doped with AuNPs.

  • Wei Zhang‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Two key concerns exist in contemporary cancer chemotherapy in clinic: limited therapeutic efficiency and substantial side effects in patients. In recent years, researchers have been investigating a revolutionary cancer treatment technique, and photodynamic therapy (PDT) has been proposed by many scholars. A drug for photodynamic cancer treatment was synthesized using the hydrothermal method, which has a high efficiency to release reactive oxygen species (ROS). It may also be utilized as a clear multi-modality bioimaging platform for photoacoustic imaging (PAI) due to its photothermal effect, computed tomography (CT), and magnetic resonance imaging (MRI). When compared to single-modality imaging, multi-modality imaging delivers far more thorough and precise details for cancer diagnosis. Furthermore, Au-doped up-conversion nanoparticles (UCNPs) have an exceptionally high luminous intensity. The Au-doped UCNPs, in particular, are non-toxic to tissues without laser at an 808 nm wavelength, endowing the as-prepared medications with outstanding therapeutic efficacy but exceptionally low side effects. These findings may encourage fresh effective imaging-guided approaches to meet the goal of photodynamic cancer therapy to be created.


Photothermal Effect and Multi-Modality Imaging of Up-Conversion Nanomaterial Doped with Gold Nanoparticles.

  • Wei Zhang‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Two key concerns exist in contemporary cancer chemotherapy in clinics: limited therapeutic efficiency and substantial side effects in patients. In recent years, researchers have been investigating revolutionary cancer treatment techniques and photo-thermal therapy (PTT) has been proposed by many scholars. A drug for photothermal cancer treatment was synthesized using the hydrothermal method, which has a high light-to-heat conversion efficiency. It may also be utilized as a clear multi-modality bioimaging platform for photoacoustic imaging (PAI), computed tomography (CT), and magnetic resonance imaging (MRI). When compared to single-modality imaging, multi-modality imaging delivers far more thorough and precise details for cancer diagnosis. Furthermore, gold-doped upconverting nanoparticles (UCNPs) have an exceptionally high target recognition for tumor cells. The gold-doped UCNPs, in particular, are non-toxic to normal tissues, endowing the as-prepared medications with outstanding therapeutic efficacy but exceptionally low side effects. These findings may encourage the creation of fresh effective imaging-guided approaches to meet the goal of photothermal cancer therapy.


Combined PET and whole-tissue imaging of lymphatic-targeting vaccines in non-human primates.

  • Jacob T Martin‎ et al.
  • Biomaterials‎
  • 2021‎

Antigen accumulation in lymph nodes (LNs) is critical for vaccine efficacy, but understanding of vaccine biodistribution in humans or large animals remains limited. Using the rhesus macaque model, we employed a combination of positron emission tomography (PET) and fluorescence imaging to characterize the whole-animal to tissue-level biodistribution of a subunit vaccine comprised of an HIV envelope trimer protein nanoparticle (trimer-NP) and lipid-conjugated CpG adjuvant (amph-CpG). Following immunization in the thigh, PET imaging revealed vaccine uptake primarily in inguinal and iliac LNs, reaching distances up to 17 cm away from the injection site. Within LNs, trimer-NPs exhibited striking accumulation on the periphery of follicular dendritic cell (FDC) networks in B cell follicles. Comparative imaging of soluble Env trimers (not presented on nanoparticles) in naïve or previously-immunized animals revealed diffuse deposition of trimer antigens in LNs following primary immunization, but concentration on FDCs in pre-immunized animals with high levels of trimer-specific IgG. These data demonstrate the capacity of nanoparticle or "albumin hitchhiking" technologies to concentrate vaccines in genitourinary tract-draining LNs, which may be valuable for promoting mucosal immunity.


Lanthanide europium MOF nanocomposite as the theranostic nanoplatform for microwave thermo-chemotherapy and fluorescence imaging.

  • Lirong Zhao‎ et al.
  • Journal of nanobiotechnology‎
  • 2022‎

Microwave sensitization nanoplatform, integrating multiple functional units for improving tumor selectivity, is of great significance for clinical tumor microwave treatment. Lanthanide europium metal organic framework (EuMOF) is expected to be a theranostic nanoplatform owing to its unique luminescent and microwave sensitization properties. However, it is difficult to be applied to complicated biological systems for EuMOF due to its rapid degradation induced by the solvent molecular and ionic environment. In this work, a luminescent EuMOF nanocomposite (EuMOF@ZIF/AP-PEG, named EZAP) was designed, which brought the multifunctional characteristics of microwave sensitization, fluorescence imaging and drug loading.


Cancer cell membrane-coated nanoparticles for bimodal imaging-guided photothermal therapy and docetaxel-enhanced immunotherapy against cancer.

  • Qiaoqi Chen‎ et al.
  • Journal of nanobiotechnology‎
  • 2021‎

Mono-therapeutic modality has limitations in combating metastatic lesions with complications. Although emerging immunotherapy exhibits preliminary success, solid tumors are usually immunosuppressive, leading to ineffective antitumor immune responses and immunotherapeutic resistance. The rational combination of several therapeutic modalities may potentially become a new therapeutic strategy to effectively combat cancer.


Single-molecule imaging revealed enhanced dimerization of transforming growth factor β type II receptors in hypertrophic cardiomyocytes.

  • Kangmin He‎ et al.
  • Biochemical and biophysical research communications‎
  • 2011‎

Transforming growth factor β (TGF-β) signaling plays an important role in the pathogenesis of cardiac hypertrophy. However, the molecular mechanism of TGF-β signaling during the process of cardiac remodeling remains poorly understood. In the present study, by employing single-molecule fluorescence imaging approach, we demonstrated that in neonatal rat cardiomyocytes, TGF-β type II receptors (TβRII) existed as monomers at the low expression level, and dimerized upon TGF-β1 stimulation. Importantly, for the first time, we found the increased dimerization of TβRII in hypertrophic cardiomyocytes comparing to the normal cardiomyocytes. The enhanced TβRII dimerization was correlated with the enhanced Smad3 phosphorylation levels. These results provide new information on the mechanism of TGF-β signaling in cardiac remodeling.


Magnetic resonance imaging - ultrasound fusion targeted biopsy outperforms standard approaches in detecting prostate cancer: A meta-analysis.

  • Xuping Jiang‎ et al.
  • Molecular and clinical oncology‎
  • 2016‎

The aim of the present study was to determine whether magnetic resonance imaging - ultrasound (MRI-US) fusion prostate biopsy is superior to systematic biopsy for making a definitive diagnosis of prostate cancer. The two strategies were also compared regarding their ability to detect clinically significant and insignificant prostate cancer. A literature search was conducted through the PubMed, EMBASE and China National Knowledge Infrastructure databases using appropriate search terms. A total of 3,415 cases from 21 studies were included in the present meta-analysis. Data were expressed as relative risk (RR) and 95% confidence interval. The results revealed that MRI-US fusion biopsy achieved a higher rate of overall prostate cancer detection compared with systematic biopsy (RR=1.09; P=0.047). Moreover, MRI-US fusion biopsy detected more clinically significant cancers compared with systematic biopsy (RR=1.22; P<0.01). It is therefore recommended that multi-parametric MRI-US is performed in men suspected of having prostate cancer to optimize the detection of clinically significant disease, while reducing the burden of biopsies.


Active-target T1-weighted MR Imaging of Tiny Hepatic Tumor via RGD Modified Ultra-small Fe3O4 Nanoprobes.

  • Zhengyang Jia‎ et al.
  • Theranostics‎
  • 2016‎

Developing ultrasensitive contrast agents for the early detection of malignant tumors in liver is highly demanded. Constructing hepatic tumors specific targeting probes could provide more sensitive imaging information but still faces great challenges. Here we report a novel approach for the synthesis of ultra-small Fe3O4 nanoparticles conjugated with c(RGDyK) and their applications as active-target T1-weighted magnetic resonance imaging (MRI) contrast agent (T1-Fe3O4) for imaging tiny hepatic tumors in vivo. RGD-modified T1-Fe3O4 nanoprobes exhibited high r1 of 7.74 mM(-1)s(-1) and ultralow r2/r1 of 2.8 at 3 T, reflecting their excellent T1 contrast effect at clinically relevant magnetic field. High targeting specificity together with favorable biocompatibility and strong ability to resist against non-specific uptake were evaluated through in vitro studies. Owing to the outstanding properties of tumor angiogenesis targeting with little phagocytosis in liver parenchyma, hepatic tumor as small as 2.2 mm was successfully detected via the T1 contrast enhancement of RGD-modified T1-Fe3O4. It is emphasized that this is the first report on active-target T1 imaging of hepatic tumors, which could not only significantly improve diagnostic sensitivity, but also provide post therapeutic assessments for patients with liver cancer.


Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds.

  • Tuğba Köker‎ et al.
  • Nature communications‎
  • 2018‎

The in cellulo assembly of plasmonic nanomaterials into photo-responsive probes is of great interest for many bioimaging and nanophotonic applications but remains challenging with traditional nucleic acid scaffolds-based bottom-up methods. Here, we address this quandary using split-fluorescent protein (FP) fragments as molecular glue and switchable Raman reporters to assemble gold or silver plasmonic nanoparticles (NPs) into photonic clusters directly in live cells. When targeted to diffusing surface biomarkers in cancer cells, the NPs self-assemble into surface-enhanced Raman-scattering (SERS) nanoclusters having hot spots homogenously seeded by the reconstruction of full-length FPs. Within plasmonic hot spots, autocatalytic activation of the FP chromophore and near-field amplification of its Raman fingerprints enable selective and sensitive SERS imaging of targeted cells. This FP-driven assembly of metal colloids also yields enhanced photoacoustic signals, allowing the hybrid FP/NP nanoclusters to serve as contrast agents for multimodal SERS and photoacoustic microscopy with single-cell sensitivity.


CEP55: an immune-related predictive and prognostic molecular biomarker for multiple cancers.

  • Guo-Sheng Li‎ et al.
  • BMC pulmonary medicine‎
  • 2023‎

Centrosomal protein 55 (CEP55) plays a significant role in specific cancers. However, comprehensive research on CEP55 is lacking in pan-cancer.


In situ and real-time imaging of superoxide anion and peroxynitrite elucidating arginase 1 nitration aggravating hepatic ischemia-reperfusion injury.

  • Wen Zhang‎ et al.
  • Biomaterials‎
  • 2019‎

Hepatic ischemia-reperfusion (IR) injury is dynamically regulated by intertwined superoxide anion (O2-)-peroxynitrite (ONOO-) cascaded molecules. Arginase 1 involves in O2-/ONOO- fluctuations and is strongly connected to IR injury. A few probes have been innovated to measure intracellular O2- or ONOO- by fluorescent imaging separately, but revealing the definite link of O2-, ONOO- and arginase 1 in situ remains unidentified in hepatic IR. Thus, a well-designed dual-color two-photon fluorescence probe (CyCA) was created for the in situ real-time detection of O2--ONOO-. Surprisingly, CyCA exhibited a suitable combination of high specificity, preeminent sensitivity, exclusive mitochondria-targeting and fast-response. On the basis of remarkable advantages, we successfully applied CyCA to visualize endogenous O2- and ONOO- in living cells and mice. The synergistic elevation of mitochondrial O2--ONOO- in IR mice was observed for the first time. Furthermore, three tyrosine nitration-sites in arginase 1 caused by ONOO- were identified in proteomic analysis, which was never reported previously. Attractively, nitro-modified arginase 1 could further promote ONOO- formation, ultimately exacerbating the intracellular redox imbalance and IR injury. These new findings decipher direct molecular links of O2--ONOO--arginase 1, and suggest effective strategies for the prevention and treatment of IR injury.


A molecular probe carrying anti-tropomyosin 4 for early diagnosis of cerebral ischemia/reperfusion injury.

  • Teng-Fei Yu‎ et al.
  • Neural regeneration research‎
  • 2023‎

In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge. We injected porous Ag/Au@SiO2 bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cerebral ischemia/reperfusion injury and observed microvascular changes in the brain using photoacoustic imaging with ultrasonography. At each measured time point, the total photoacoustic signal was significantly higher on the affected side than on the healthy side. Twelve hours after reperfusion, cerebral perfusion on the affected side increased, cerebrovascular injury worsened, and anti-tropomyosin 4 expression increased. Twenty-four hours after reperfusion and later, perfusion on the affected side declined slowly and stabilized after 1 week; brain injury was also alleviated. Histopathological and immunohistochemical examinations confirmed the brain injury tissue changes. The nanoshell molecular probe carrying anti-tropomyosin 4 has potential for use in early diagnosis of cerebral ischemia/reperfusion injury and evaluating its progression.


Ultrasound and magnetic resonance imaging of cyclic arginine glycine aspartic acid-gadopentetic acid-polylactic acid in human breast cancer by targeting αvβ3 in xenograft-bearing nude mice.

  • Danhui Fu‎ et al.
  • Bioengineered‎
  • 2022‎

Effective early detection shows the potential to reduce breast cancer mortality. This study aimed to establish a targeted contrast agent for Magnetic Resonance Imaging (MRI)/ultrasound dual-modality molecular radiography for breast cancer. The cyclic arginine-glycine-aspartate-gadopentetic acid-polylactic acid (cRGD and Gd-DTPA) coated by multi-functional blank poly (lactic-co-glycolic acid) (PLGA) nanoparticles) was successfully constructed by chemical synthesis method with high stability. The safety of cRGD-Gd-DTPA-PLGA was demonstrated in vitro and in vivo, and their affinity to breast cancer cells was revealed. Moreover, MRI/ultrasound dual-modality molecular radiography in vitro showed that as the concentration of contrast agent increased, the echo enhancement and signal intensity of MRI imaging were also elevated. The mouse models of human breast cancer also indicated significant target enhancements of cRGD-Gd-DTPA-PLGA magnetic nanoparticles in the mouse tumor. Thus, cRGD-Gd-DTPA-PLGA magnetic nanoparticles were suggested as qualified MRI/ultrasound dual-modality molecular radiography contrast agent. We further explored the targeting mechanism of cRGD-Gd-DTPA-PLGA in breast cancer. The results showed that αvβ3 was highly expressed in breast cancer tissues, and cRGD-Gd-DTPA-PLGA used for MRI/ultrasound dual-modality molecular radiography by targeting αvβ3. Additionally, we found that the signal-to-noise ratio of MRI was positively correlated with microvessel density (MVD). The cRGD-Gd-DTPA-PLGA dynamicly and quantitatively monitored breast cancer by monitoring the state of neovascularization. In conclusion, in the present study, we successfully constructed the cRGD-Gd-DTPA-PLGA magnetic nanoparticles for MRI/ultrasound dual-modality molecular radiography. The cRGD-Gd-DTPA-PLGA showed potential in early detection and diagnosis of metastasis, and dynamic evaluation of the efficacy of molecular targeted therapy of integrin αvβ3.


Silk Fibroin-Coated Nanoagents for Acidic Lysosome Targeting by a Functional Preservation Strategy in Cancer Chemotherapy.

  • Mixiao Tan‎ et al.
  • Theranostics‎
  • 2019‎

Background: Premature drug leakage and inefficient cellular uptake are stand out as considerable hurdles for low drug delivery efficiency in tumor chemotherapy. Thus, we established a novel drug delivery and transportation strategy mediated by biocompatible silk fibroin (SF)-coated nanoparticles to overcome these therapeutic hurdles. Methods: we first synthesised a TME-responsive biocompatible nanoplatform constructed of amorphous calcium carbonate (ACC) cores and SF shells for enhanced chemotherapy by concurrently inhibiting premature drug release, achieving lysosome-targeted explosion and locally sprayed DOX, and monitoring via PAI, which was verified both in vitro and in vivo. Results: The natural SF polymer first served as a "gatekeeper" to inhibit a drug from prematurely leaking into the circulation was demonstrated both in vitro and in vivo. Upon encountering TMEs and targeting to the acidic pH environments of lysosomes, the sensitive ACC nanoparticles were gradually degraded, eventually generating a large amount of Ca2+ and CO2, resulting in lysosomal collapse, thus preventing both the efflux of DOX from cancer cells and the protonation of DOX within the lysosome, releasing multiple hydrolytic enzyme to cytoplasm, exhibiting the optimal therapeutic dose and remarkable synergetic therapeutic performance. In particular, CO2 gas generated by the pH response of ACC nanocarriers demonstrated their imaging capability for PAI, providing the potential for quantifying and guiding drug release in targets. Conclusion: In this work, we constructed TME-responsive biocompatible NPs by coating DOX-preloaded ACC-DOX clusters with SF via a bioinspired mineralization method for efficient therapeutics. This functional lysosome-targeted preservation-strategy-based therapeutic system could provid novel insights into cancer chemotherapy.


Biomimetic manganese-eumelanin nanocomposites for combined hyperthermia-immunotherapy against prostate cancer.

  • Yu Liu‎ et al.
  • Journal of nanobiotechnology‎
  • 2022‎

Pro-tumoral and immunosuppressive M2-like tumor-associated macrophages (TAMs) contribute to tumor progression, recurrence and distal metastasis. However, current TAMs-modulating therapeutic strategies often encounter challenges including insufficient immune activation, weak antigen presentation ability and unsatisfactory antitumor immune performance. Herein, cyclic RGD peptide functionalized and manganese doped eumelanin-like nanocomposites (RMnMels) are reported for combined hyperthermia-immunotherapy against PC3 prostate cancer. The RMnMels could promote M2-to-M1 macrophage repolarization via scavenging multiple reactive oxygen species and remodeling the immunosuppressive tumor microenvironment. Following near-infrared light irradiation, RMnMels-mediated thermal ablation not only could destroy tumor cells directly, but also elicit the release of damage associated molecular patterns and tumor-associated antigens, provoking robust tumor immunogenicity and strong antitumor immune responses. The results showed that RMnMels could effectively scavenge reactive oxygen species and promote M2-to-M1 macrophage repolarization both in vitro and in vivo. Synergistically enhanced anti-tumor therapeutic efficacy was achieved following single administration of RMnMels plus single round of laser irradiation, evidenced by decreased primary tumor sizes and decreased number of distant liver metastatic nodules. The as-developed RMnMels may represent a simple and high-performance therapeutic nanoplatform for immunomodulation and enhanced antitumor immune responses.


A Cleverly Designed Novel Lipid Nanosystem: Targeted Retention, Controlled Visual Drug Release, and Cascade Amplification Therapy for Mammary Carcinoma in vitro.

  • Xiang-Zhi Zhao‎ et al.
  • International journal of nanomedicine‎
  • 2020‎

To construct an ideal theranostic nanoplatform (LIP3); to clarify its physicochemical properties; to confirm its characteristics of dual-modality imaging, active-targeting, and cascade amplification therapy for mammary carcinoma; and to perform a preliminary exploration of the cytotoxicity mechanism.


BDNF-overexpressing MSCs delivered by hydrogel in acute ischemic stroke treatment.

  • Congxiao Wang‎ et al.
  • Annals of translational medicine‎
  • 2022‎

Ischemic stroke treatment is a challenge worldwide. The efficacy and safety of mesenchymal stem cells (MSCs) for stroke have been confirmed. However, poor survival of MSCs in the ischemic environment limits the therapy efficacy. Changes in MSC status in the ischemic environment after transplantation is difficult to monitor. This study aimed to deliver brain-derived neurotrophic factor (BDNF)-overexpressing MSCs by hydrogel (H-B-MSCs) to promote recovery after ischemic stroke.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: