Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 28 papers

Molecular dynamics study of naturally existing cavity couplings in proteins.

  • Montserrat Barbany‎ et al.
  • PloS one‎
  • 2015‎

Couplings between protein sub-structures are a common property of protein dynamics. Some of these couplings are especially interesting since they relate to function and its regulation. In this article we have studied the case of cavity couplings because cavities can host functional sites, allosteric sites, and are the locus of interactions with the cell milieu. We have divided this problem into two parts. In the first part, we have explored the presence of cavity couplings in the natural dynamics of 75 proteins, using 20 ns molecular dynamics simulations. For each of these proteins, we have obtained two trajectories around their native state. After applying a stringent filtering procedure, we found significant cavity correlations in 60% of the proteins. We analyze and discuss the structure origins of these correlations, including neighbourhood, cavity distance, etc. In the second part of our study, we have used longer simulations (≥100 ns) from the MoDEL project, to obtain a broader view of cavity couplings, particularly about their dependence on time. Using moving window computations we explored the fluctuations of cavity couplings along time, finding that these couplings could fluctuate substantially during the trajectory, reaching in several cases correlations above 0.25/0.5. In summary, we describe the structural origin and the variations with time of cavity couplings. We complete our work with a brief discussion of the biological implications of these results.


Towards a molecular dynamics consensus view of B-DNA flexibility.

  • Alberto Pérez‎ et al.
  • Nucleic acids research‎
  • 2008‎

We present a systematic study of B-DNA flexibility in aqueous solution using long-scale molecular dynamics simulations with the two more recent versions of nucleic acids force fields (CHARMM27 and parmbsc0) using four long duplexes designed to contain several copies of each individual base pair step. Our study highlights some differences between pambsc0 and CHARMM27 families of simulations, but also extensive agreement in the representation of DNA flexibility. We also performed additional simulations with the older AMBER force fields parm94 and parm99, corrected for non-canonical backbone flips. Taken together, the results allow us to draw for the first time a consensus molecular dynamics picture of B-DNA flexibility.


Comparison of molecular dynamics and superfamily spaces of protein domain deformation.

  • Javier A Velázquez-Muriel‎ et al.
  • BMC structural biology‎
  • 2009‎

It is well known the strong relationship between protein structure and flexibility, on one hand, and biological protein function, on the other hand. Technically, protein flexibility exploration is an essential task in many applications, such as protein structure prediction and modeling. In this contribution we have compared two different approaches to explore the flexibility space of protein domains: i) molecular dynamics (MD-space), and ii) the study of the structural changes within superfamily (SF-space).


A systematic molecular dynamics study of nearest-neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA.

  • Richard Lavery‎ et al.
  • Nucleic acids research‎
  • 2010‎

It is well recognized that base sequence exerts a significant influence on the properties of DNA and plays a significant role in protein-DNA interactions vital for cellular processes. Understanding and predicting base sequence effects requires an extensive structural and dynamic dataset which is currently unavailable from experiment. A consortium of laboratories was consequently formed to obtain this information using molecular simulations. This article describes results providing information not only on all 10 unique base pair steps, but also on all possible nearest-neighbor effects on these steps. These results are derived from simulations of 50-100 ns on 39 different DNA oligomers in explicit solvent and using a physiological salt concentration. We demonstrate that the simulations are converged in terms of helical and backbone parameters. The results show that nearest-neighbor effects on base pair steps are very significant, implying that dinucleotide models are insufficient for predicting sequence-dependent behavior. Flanking base sequences can notably lead to base pair step parameters in dynamic equilibrium between two conformational sub-states. Although this study only provides limited data on next-nearest-neighbor effects, we suggest that such effects should be analyzed before attempting to predict the sequence-dependent behavior of DNA.


Long-timescale dynamics of the Drew-Dickerson dodecamer.

  • Pablo D Dans‎ et al.
  • Nucleic acids research‎
  • 2016‎

We present a systematic study of the long-timescale dynamics of the Drew-Dickerson dodecamer (DDD: d(CGCGAATTGCGC)2) a prototypical B-DNA duplex. Using our newly parameterized PARMBSC1 force field, we describe the conformational landscape of DDD in a variety of ionic environments from minimal salt to 2 M Na(+)Cl(-) or K(+)Cl(-) The sensitivity of the simulations to the use of different solvent and ion models is analyzed in detail using multi-microsecond simulations. Finally, an extended (10 μs) simulation is used to characterize slow and infrequent conformational changes in DDD, leading to the identification of previously uncharacterized conformational states of this duplex which can explain biologically relevant conformational transitions. With a total of more than 43 μs of unrestrained molecular dynamics simulation, this study is the most extensive investigation of the dynamics of the most prototypical DNA duplex.


Conformational dynamics of the human propeller telomeric DNA quadruplex on a microsecond time scale.

  • Barira Islam‎ et al.
  • Nucleic acids research‎
  • 2013‎

The human telomeric DNA sequence with four repeats can fold into a parallel-stranded propeller-type topology. NMR structures solved under molecular crowding experiments correlate with the crystal structures found with crystal-packing interactions that are effectively equivalent to molecular crowding. This topology has been used for rationalization of ligand design and occurs experimentally in a number of complexes with a diversity of ligands, at least in the crystalline state. Although G-quartet stems have been well characterized, the interactions of the TTA loop with the G-quartets are much less defined. To better understand the conformational variability and structural dynamics of the propeller-type topology, we performed molecular dynamics simulations in explicit solvent up to 1.5 μs. The analysis provides a detailed atomistic account of the dynamic nature of the TTA loops highlighting their interactions with the G-quartets including formation of an A:A base pair, triad, pentad and hexad. The results present a threshold in quadruplex simulations, with regards to understanding the flexible nature of the sugar-phosphate backbone in formation of unusual architecture within the topology. Furthermore, this study stresses the importance of simulation time in sampling conformational space for this topology.


Proton Transfers to DNA in Native Electrospray Ionization Mass Spectrometry: A Quantum Mechanics/Molecular Mechanics Study.

  • Mirko Paulikat‎ et al.
  • The journal of physical chemistry letters‎
  • 2022‎

Native electrospray ionization-ion mobility mass spectrometry (N-ESI/IM-MS) is a powerful approach for low-resolution structural studies of DNAs in the free state and in complex with ligands. Solvent vaporization is coupled with proton transfers from ammonium ions to the DNA, resulting in a reduction of the DNA charge. Here we provide insight into these processes by classical molecular dynamics and quantum mechanics/molecular mechanics free energy calculations on the d(GpCpGpApApGpC) heptamer, for which a wealth of experiments is available. Our multiscale simulations, consistent with experimental data, reveal a highly complex scenario. The proton either sits on one of the molecules or is fully delocalized on both, depending on the level of hydration of the analytes and the size of the droplets formed during the electrospray experiments. This work complements our previous study of the intramolecular proton transfer on the same heptamer occurring after the processes studied here, and together, they provide a first molecular view of proton transfer in N-ESI/IM-MS.


The structural impact of DNA mismatches.

  • Giulia Rossetti‎ et al.
  • Nucleic acids research‎
  • 2015‎

The structure and dynamics of all the transversion and transition mismatches in three different DNA environments have been characterized by molecular dynamics simulations and NMR spectroscopy. We found that the presence of mismatches produced significant local structural alterations, especially in the case of purine transversions. Mismatched pairs often show promiscuous hydrogen bonding patterns, which interchange among each other in the nanosecond time scale. This therefore defines flexible base pairs, where breathing is frequent, and where distortions in helical parameters are strong, resulting in significant alterations in groove dimension. Even if the DNA structure is plastic enough to absorb the structural impact of the mismatch, local structural changes can be propagated far from the mismatch site, following the expected through-backbone and a previously unknown through-space mechanism. The structural changes related to the presence of mismatches help to understand the different susceptibility of mismatches to the action of repairing proteins.


Parmbsc1: a refined force field for DNA simulations.

  • Ivan Ivani‎ et al.
  • Nature methods‎
  • 2016‎

We present parmbsc1, a force field for DNA atomistic simulation, which has been parameterized from high-level quantum mechanical data and tested for nearly 100 systems (representing a total simulation time of ∼ 140 μs) covering most of DNA structural space. Parmbsc1 provides high-quality results in diverse systems. Parameters and trajectories are available at http://mmb.irbbarcelona.org/ParmBSC1/.


Differential stability of 2'F-ANA*RNA and ANA*RNA hybrid duplexes: roles of structure, pseudohydrogen bonding, hydration, ion uptake and flexibility.

  • Jonathan K Watts‎ et al.
  • Nucleic acids research‎
  • 2010‎

Hybrids of RNA with arabinonucleic acids 2'F-ANA and ANA have very similar structures but strikingly different thermal stabilities. We now present a thorough study combining NMR and other biophysical methods together with state-of-the-art theoretical calculations on a fully modified 10-mer hybrid duplex. Comparison between the solution structure of 2'F-ANA*RNA and ANA*RNA hybrids indicates that the increased binding affinity of 2'F-ANA is related to several subtle differences, most importantly a favorable pseudohydrogen bond (2'F-purine H8) which contrasts with unfavorable 2'-OH-nucleobase steric interactions in the case of ANA. While both 2'F-ANA and ANA strands maintained conformations in the southern/eastern sugar pucker range, the 2'F-ANA strand's structure was more compatible with the A-like structure of a hybrid duplex. No dramatic differences are found in terms of relative hydration for the two hybrids, but the ANA*RNA duplex showed lower uptake of counterions than its 2'F-ANA*RNA counterpart. Finally, while the two hybrid duplexes are of similar rigidities, 2'F-ANA single strands may be more suitably preorganized for duplex formation. Thus the dramatically increased stability of 2'F-ANA*RNA and ANA*RNA duplexes is caused by differences in at least four areas, of which structure and pseudohydrogen bonding are the most important.


Repair of UV-Induced DNA Damage Independent of Nucleotide Excision Repair Is Masked by MUTYH.

  • Abdelghani Mazouzi‎ et al.
  • Molecular cell‎
  • 2017‎

DNA lesions caused by UV damage are thought to be repaired solely by the nucleotide excision repair (NER) pathway in human cells. Patients carrying mutations within genes functioning in this pathway display a range of pathologies, including an increased susceptibility to cancer, premature aging, and neurological defects. There are currently no curative therapies available. Here we performed a high-throughput chemical screen for agents that could alleviate the cellular sensitivity of NER-deficient cells to UV-induced DNA damage. This led to the identification of the clinically approved anti-diabetic drug acetohexamide, which promoted clearance of UV-induced DNA damage without the accumulation of chromosomal aberrations, hence promoting cellular survival. Acetohexamide exerted this protective function by antagonizing expression of the DNA glycosylase, MUTYH. Together, our data reveal the existence of an NER-independent mechanism to remove UV-induced DNA damage and prevent cell death.


Defining the nature of thermal intermediate in 3 state folding proteins: apoflavodoxin, a study case.

  • Rebeca García-Fandiño‎ et al.
  • PLoS computational biology‎
  • 2012‎

The early stages of the thermal unfolding of apoflavodoxin have been determined by using atomistic multi microsecond-scale molecular dynamics (MD) simulations complemented with a variety of experimental techniques. Results strongly suggest that the intermediate is reached very early in the thermal unfolding process and that it has the properties of an "activated" form of the native state, where thermal fluctuations in the loops break loop-loop contacts. The unrestrained loops gain then kinetic energy corrupting short secondary structure elements without corrupting the core of the protein. The MD-derived ensembles agree with experimental observables and draw a picture of the intermediate state inconsistent with a well-defined structure and characteristic of a typical partially disordered protein. Our results allow us to speculate that proteins with a well packed core connected by long loops might behave as partially disordered proteins under native conditions, or alternatively behave as three state folders. Small details in the sequence, easily tunable by evolution, can yield to one or the other type of proteins.


i-Motif folding intermediates with zero-nucleotide loops are trapped by 2'-fluoroarabinocytidine via F···H and O···H hydrogen bonds.

  • Roberto El-Khoury‎ et al.
  • Communications chemistry‎
  • 2023‎

G-quadruplex and i-motif nucleic acid structures are believed to fold through kinetic partitioning mechanisms. Such mechanisms explain the structural heterogeneity of G-quadruplex metastable intermediates which have been extensively reported. On the other hand, i-motif folding is regarded as predictable, and research on alternative i-motif folds is limited. While TC5 normally folds into a stable tetrameric i-motif in solution, we report that 2'-deoxy-2'-fluoroarabinocytidine (araF-C) substitutions can prompt TC5 to form an off-pathway and kinetically-trapped dimeric i-motif, thereby expanding the scope of i-motif folding landscapes. This i-motif is formed by two strands, associated head-to-head, and featuring zero-nucleotide loops which have not been previously observed. Through spectroscopic and computational analyses, we also establish that the dimeric i-motif is stabilized by fluorine and non-fluorine hydrogen bonds, thereby explaining the superlative stability of araF-C modified i-motifs. Comparative experimental findings suggest that the strength of these interactions depends on the flexible sugar pucker adopted by the araF-C residue. Overall, the findings reported here provide a new role for i-motifs in nanotechnology and also pose the question of whether unprecedented i-motif folds may exist in vivo.


Side chain to main chain hydrogen bonds stabilize a polyglutamine helix in a transcription factor.

  • Albert Escobedo‎ et al.
  • Nature communications‎
  • 2019‎

Polyglutamine (polyQ) tracts are regions of low sequence complexity frequently found in transcription factors. Tract length often correlates with transcriptional activity and expansion beyond specific thresholds in certain human proteins is the cause of polyQ disorders. To study the structural basis of the association between tract length, transcriptional activity and disease, we addressed how the conformation of the polyQ tract of the androgen receptor, associated with spinobulbar muscular atrophy (SBMA), depends on its length. Here we report that this sequence folds into a helical structure stabilized by unconventional hydrogen bonds between glutamine side chains and main chain carbonyl groups, and that its helicity directly correlates with tract length. These unusual hydrogen bonds are bifurcate with the conventional hydrogen bonds stabilizing α-helices. Our findings suggest a plausible rationale for the association between polyQ tract length and androgen receptor transcriptional activity and have implications for establishing the mechanistic basis of SBMA.


NAFlex: a web server for the study of nucleic acid flexibility.

  • Adam Hospital‎ et al.
  • Nucleic acids research‎
  • 2013‎

We present NAFlex, a new web tool to study the flexibility of nucleic acids, either isolated or bound to other molecules. The server allows the user to incorporate structures from protein data banks, completing gaps and removing structural inconsistencies. It is also possible to define canonical (average or sequence-adapted) nucleic acid structures using a variety of predefined internal libraries, as well to create specific nucleic acid conformations from the sequence. The server offers a variety of methods to explore nucleic acid flexibility, such as a colorless wormlike-chain model, a base-pair resolution mesoscopic model and atomistic molecular dynamics simulations with a wide variety of protocols and force fields. The trajectories obtained by simulations, or imported externally, can be visualized and analyzed using a large number of tools, including standard Cartesian analysis, essential dynamics, helical analysis, local and global stiffness, energy decomposition, principal components and in silico NMR spectra. The server is accessible free of charge from the mmb.irbbarcelona.org/NAFlex webpage.


Nucleotide binding switches the information flow in ras GTPases.

  • Francesco Raimondi‎ et al.
  • PLoS computational biology‎
  • 2011‎

The Ras superfamily comprises many guanine nucleotide-binding proteins (G proteins) that are essential to intracellular signal transduction. The guanine nucleotide-dependent intrinsic flexibility patterns of five G proteins were investigated in atomic detail through Molecular Dynamics simulations of the GDP- and GTP-bound states (S(GDP) and S(GTP), respectively). For all the considered systems, the intrinsic flexibility of S(GDP) was higher than that of S(GTP), suggesting that Guanine Exchange Factor (GEF) recognition and nucleotide switch require higher amplitude motions than effector recognition or GTP hydrolysis. Functional mode, dynamic domain, and interaction energy correlation analyses highlighted significant differences in the dynamics of small G proteins and Gα proteins, especially in the inactive state. Indeed, S(GDP) of Gα(t), is characterized by a more extensive energy coupling between nucleotide binding site and distal regions involved in GEF recognition compared to small G proteins, which attenuates in the active state. Moreover, mechanically distinct domains implicated in nucleotide switch could be detected in the presence of GDP but not in the presence of GTP. Finally, in small G proteins, functional modes are more detectable in the inactive state than in the active one and involve changes in solvent exposure of two highly conserved amino acids in switches I and II involved in GEF recognition. The average solvent exposure of these amino acids correlates in turn with the rate of GDP release, suggesting for them either direct or indirect roles in the process of nucleotide switch. Collectively, nucleotide binding changes the information flow through the conserved Ras-like domain, where GDP enhances the flexibility of mechanically distinct portions involved in nucleotide switch, and favors long distance allosteric communication (in Gα proteins), compared to GTP.


Challenges of docking in large, flexible and promiscuous binding sites.

  • Martin Kotev‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2016‎

After decades of work, the correct determination of the binding mode of a small molecule into a target protein is still a challenging problem, whose difficulty depends on: (i) the sizes of the binding site and the ligand; (ii) the flexibility of both interacting partners, and (iii) the differential solvation of bound and unbound partners. We have evaluated the performance of standard rigid(receptor)/flexible(ligand) docking approaches with respect to last-generation fully flexible docking methods to obtain reasonable poses in a very challenging case: soluble Epoxide Hydrolase (sEH), a flexible protein showing different binding sites. We found that full description of the flexibility of both protein and ligand and accurate description of solvation leads to significant improvement in the ability of docking to reproduce well known binding modes, and at the same time capture the intrinsic binding promiscuity of the protein.


Conformationally rigid nucleoside probes help understand the role of sugar pucker and nucleobase orientation in the thrombin-binding aptamer.

  • Hisao Saneyoshi‎ et al.
  • Nucleic acids research‎
  • 2009‎

Modified thrombin-binding aptamers carrying 2'-deoxyguanine (dG) residues with locked North- or South-bicyclo[3.1.0]hexane pseudosugars were synthesized. Individual 2'-deoxyguanosines at positions dG5, dG10, dG14 and dG15 of the aptamer were replaced by these analogues where the North/anti and South/syn conformational states were confined. It was found that the global structure of the DNA aptamer was, for the most part, very accommodating. The substitution at positions 5, 10 and 14 with a locked South/syn-dG nucleoside produced aptamers with the same stability and global structure as the innate, unmodified one. Replacing position 15 with the same South/syn-dG nucleoside induced a strong destabilization of the aptamer, while the antipodal North/anti-dG nucleoside was less destabilizing. Remarkably, the insertion of a North/anti-dG nucleoside at position 14, where both pseudosugar conformation and glycosyl torsion angle are opposite with respect to the native structure, led to the complete disruption of the G-tetraplex structure as detected by NMR and confirmed by extensive molecular dynamics simulations. We conclude that conformationally locked bicyclo[3.1.0]hexane nucleosides appear to be excellent tools for studying the role of key conformational parameters that are critical for the formation of a stable, antiparallel G-tetrad DNA structures.


Rational design of novel N-alkyl-N capped biostable RNA nanostructures for efficient long-term inhibition of gene expression.

  • Montserrat Terrazas‎ et al.
  • Nucleic acids research‎
  • 2016‎

Computational techniques have been used to design a novel class of RNA architecture with expected improved resistance to nuclease degradation, while showing interference RNA activity. The in silico designed structure consists of a 24-29 bp duplex RNA region linked on both ends by N-alkyl-N dimeric nucleotides (BCn dimers; n = number of carbon atoms of the alkyl chain). A series of N-alkyl-N capped dumbbell-shaped structures were efficiently synthesized by double ligation of BCn-loop hairpins. The resulting BCn-loop dumbbells displayed experimentally higher biostability than their 3'-N-alkyl-N linear version, and were active against a range of mRNA targets. We studied first the effect of the alkyl chain and stem lengths on RNAi activity in a screen involving two series of dumbbell analogues targeting Renilla and Firefly luciferase genes. The best dumbbell design (containing BC6 loops and 29 bp) was successfully used to silence GRB7 expression in HER2+ breast cancer cells for longer periods of time than natural siRNAs and known biostable dumbbells. This BC6-loop dumbbell-shaped structure displayed greater anti-proliferative activity than natural siRNAs.


Unraveling the sequence-dependent polymorphic behavior of d(CpG) steps in B-DNA.

  • Pablo Daniel Dans‎ et al.
  • Nucleic acids research‎
  • 2014‎

We have made a detailed study of one of the most surprising sources of polymorphism in B-DNA: the high twist/low twist (HT/LT) conformational change in the d(CpG) base pair step. Using extensive computations, complemented with database analysis, we were able to characterize the twist polymorphism in the d(CpG) step in all the possible tetranucleotide environment. We found that twist polymorphism is coupled with BI/BII transitions, and, quite surprisingly, with slide polymorphism in the neighboring step. Unexpectedly, the penetration of cations into the minor groove of the d(CpG) step seems to be the key element in promoting twist transitions. The tetranucleotide environment also plays an important role in the sequence-dependent d(CpG) polymorphism. In this connection, we have detected a previously unexplored intramolecular C-H···O hydrogen bond interaction that stabilizes the low twist state when 3'-purines flank the d(CpG) step. This work explains a coupled mechanism involving several apparently uncorrelated conformational transitions that has only been partially inferred by earlier experimental or theoretical studies. Our results provide a complete description of twist polymorphism in d(CpG) steps and a detailed picture of the molecular choreography associated with this conformational change.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: