Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

AMP-activated protein kinase regulates PDGF-BB-stimulated interleukin-6 synthesis in osteoblasts: involvement of mitogen-activated protein kinases.

  • Kenji Kato‎ et al.
  • Life sciences‎
  • 2012‎

We have previously reported that platelet-derived growth factor (PDGF)-BB stimulates synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, in osteoblast-like MC3T3-E1 cells, and that the activation of p44/p42 mitogen-activated protein (MAP) kinase, p38MAP kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) is implicated in the IL-6 synthesis. In the present study,we investigated the involvement of AMP-activated protein kinase (AMPK), a regulator of energy metabolism, in the PDGF-BB-stimulated IL-6 synthesis in MC3T3-E1 cells.


Incretin accelerates platelet-derived growth factor-BB-induced osteoblast migration via protein kinase A: The upregulation of p38 MAP kinase.

  • Tetsu Kawabata‎ et al.
  • Scientific reports‎
  • 2020‎

Incretins, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), secreted from enteroendocrine cells after food ingestion, are currently recognized to regulate glucose metabolism through insulin secretion. We previously demonstrated that platelet-derived growth factor-BB (PDGF-BB) induces the migration of osteoblast-like MC3T3-E1 cells through mitogen-activated protein (MAP) kinases, including p38 MAP kinase. In the present study, we investigated whether or not incretins affect the osteoblast migration. The PDGF-BB-induced cell migration was significantly reinforced by GLP-1, GIP or cAMP analogues in MC3T3-E1 cells and normal human osteoblasts. The upregulated migration by GLP-1 or cAMP analogues was suppressed by H89, an inhibitor of protein kinase A. The amplification by GLP-1 of migration induced by PDGF-BB was almost completely reduced by SB203580, a p38 MAP kinase inhibitor in MC3T3-E1 cells and normal human osteoblasts. In addition, GIP markedly strengthened the PDGF-BB-induced phosphorylation of p38 MAP kinase. Exendin-4, a GLP-1 analogue, induced Rho A expression and its translocation from cytoplasm to plasma membranes in osteoblasts at the epiphyseal lines of developing mouse femurs in vivo. These results strongly suggest that incretins accelerates the PDGF-BB-induced migration of osteoblasts via protein kinase A, and the up-regulation of p38 MAP kinase is involved in this acceleration. Our findings may highlight the novel potential of incretins to bone physiology and therapeutic strategy against bone repair.


Direct association of heat shock protein 20 (HSPB6) with phosphoinositide 3-kinase (PI3K) in human hepatocellular carcinoma: regulation of the PI3K activity.

  • Rie Matsushima-Nishiwaki‎ et al.
  • PloS one‎
  • 2013‎

HSP20 (HSPB6), one of small heat shock proteins (HSPs), is constitutively expressed in various tissues and has several functions. We previously reported that the expression levels of HSP20 in human hepatocellular carcinoma (HCC) cells inversely correlated with the progression of HCC, and that HSP20 suppresses the growth of HCC cells via the AKT and mitogen-activated protein kinase signaling pathways. However, the exact mechanism underlying the effect of HSP20 on the regulation of these signaling pathways remains to be elucidated. To clarify the details of this effect in HCC, we explored the direct targets of HSP20 in HCC using human HCC-derived HuH7 cells with HSP20 overexpression. HSP20 proteins in the HuH7 cells were coimmunoprecipitated with the p85 regulatory subunit and p110 catalytic subunit of phosphoinositide 3-kinase (PI3K), an upstream kinase of AKT. Although HSP20 overexpression in HCC cells failed to affect the expression levels of PI3K, the activity of PI3K in the unstimulated cells and even in the transforming growth factor-α stimulated cells were downregulated by HSP20 overexpression. The association of HSP20 with PI3K was also observed in human HCC tissues in vivo. These findings strongly suggest that HSP20 directly associates with PI3K and suppresses its activity in HCC, resulting in the inhibition of the AKT pathway, and subsequently decreasing the growth of HCC.


HSP70 Inhibitor Suppresses IGF-I-Stimulated Migration of Osteoblasts through p44/p42 MAP Kinase.

  • Tetsu Kawabata‎ et al.
  • Biomedicines‎
  • 2018‎

Heat shock protein 70 (HSP70) is a ubiquitously expressed molecular chaperone in a variety of cells including osteoblasts. We previously showed that insulin-like growth factor-I (IGF-I) elicits migration of osteoblast-like MC3T3-E1 cells through the activation of phosphatidylinositol 3-kinase/Akt and p44/p42 mitogen-activated protein (MAP) kinase. In the present study, we investigated the effects of HSP70 inhibitors on the IGF-I-elicited migration of these cells and the mechanism involved. The IGF-I-stimulated osteoblast migration evaluated by a wound-healing assay and by a transwell cell migration was significantly reduced by VER-155008 and YM-08, which are both HSP70 inhibitors. VER-155008 markedly suppressed the IGF-I-induced phosphorylation of p44/p42 MAP kinase without affecting that of Akt. In conclusion, our results strongly suggest that the HSP70 inhibitor reduces the IGF-I-elicited migration of osteoblasts via the p44/p42 MAP kinase.


HSP90 inhibitors potentiate PGF2α-induced IL-6 synthesis via p38 MAP kinase in osteoblasts.

  • Kazuhiko Fujita‎ et al.
  • PloS one‎
  • 2017‎

Heat shock protein 90 (HSP90) that is ubiquitously expressed in various tissues, is recognized to be a major molecular chaperone. We have previously reported that prostaglandin F2α (PGF2α), a potent bone remodeling mediator, stimulates the synthesis of interleukin-6 (IL-6) through p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase in osteoblast-like MC3T3-E1 cells, and that Rho-kinase acts at a point upstream of p38 MAP kinase. In the present study, we investigated the involvement of HSP90 in the PGF2α-stimulated IL-6 synthesis and the underlying mechanism in MC3T3-E1 cells. Geldanamycin, an inhibitor of HSP90, significantly amplified both the PGF2α-stimulated IL-6 release and the mRNA expression levels. In addition, other HSP90 inhibitors, 17-allylamino-17demethoxy-geldanamycin (17-AAG) and 17-dimethylamino-ethylamino-17-demethoxy-geldanamycin (17-DMAG) and onalespib, enhanced the PGF2α-stimulated IL-6 release. Geldanamycin, 17-AAG and onalespib markedly strengthened the PGF2α-induced phosphorylation of p38 MAP kinase. Geldanamycin and 17-AAG did not affect the PGF2α-induced phosphorylation of p44/p42 MAP kinase and myosin phosphatase targeting subunit (MYPT-1), a substrate of Rho-kinase, and the protein levels of RhoA and Rho-kinase. In addition, HSP90-siRNA enhanced the PGF2α-induced phosphorylation of p38 MAP kinase. Furthermore, SB203580, an inhibitor of p38 MAP kinase, significantly suppressed the amplification by geldanamycin, 17-AAG or 17-DMAG of the PGF2α-stimulated IL-6 release. Our results strongly suggest that HSP90 negatively regulates the PGF2α-stimulated IL-6 synthesis in osteoblasts, and that the effect of HSP90 is exerted through regulating p38 MAP kinase activation.


Involvement of Rho-kinase in tumor necrosis factor-alpha-induced interleukin-6 release from C6 glioma cells.

  • Shinobu Yamaguchi‎ et al.
  • Neurochemistry international‎
  • 2009‎

Tumor necrosis factor (TNF)-alpha stimulated interleukin (IL)-6 release and induced the phosphorylation of myosin phosphatase targeting subunit (MYPT)-1, a Rho-kinase substrate. The IL-6 release was significantly suppressed by Y-27632 and fasudil, Rho-kinase inhibitors. Although IkappaB inhibitor suppressed the TNF-alpha-induced IL-6 release, the Rho-kinase inhibitors did not affect the TNF-alpha-induced IkappaB phosphorylation. TNF-alpha induced the phosphorylation of p38 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), and p44/p42 MAP kinase. The TNF-alpha-induced IL-6 release was suppressed by SB203580, a p38 MAPK inhibitor, or SP600125, a SAPK/JNK inhibitor, but not by PD98059, a MAP kinase/extracellular signal-regulated kinase kinase inhibitor. The Rho-kinase inhibitors attenuated the TNF-alpha-induced phosphorylation of both p38 MAP kinase and SAPK/JNK. Rho-kinase, which has been used for the clinical treatment of cerebral vasospasms, may be involved in other central nervous system (CNS) disorders such as traumatic injury, stroke, neurodegenerative disease and neuropathic pain. TNF-alpha, a proinflammatory cytokine that affects the CNS through cytokines, such as IL-6, release from neurons, astrocytes and microglia. Therefore, we investigated the involvement of Rho-kinase in the TNF-alpha-induced IL-6 release from rat C6 glioma cells. These results strongly suggest that Rho-kinase regulates the TNF-alpha-induced IL-6 release at a point upstream from p38 MAPK and SAPK/JNK in C6 glioma cells. Therefore, Rho-kinase inhibitor may be considered to be a new clinical candidate for the treatment of CNS disorders in addition to cerebral vasospasms.


Heat shock protein 70 positively regulates transforming growth factor-α-induced hepatocellular carcinoma cell migration via the AKT signaling pathway.

  • Kaido Kobayashi‎ et al.
  • Heliyon‎
  • 2020‎

Heat shock proteins (HSPs) are induced in response to extracellular stress and manage the quality of proteins as molecular chaperones. HSP70, a highly conserved HSP, has been reported to correlate with the proliferation and migration of human cancer cells, such as oral, prostate, lung and liver cancer. Regarding hepatocellular carcinoma (HCC), the HSP70 levels in the tumor tissues from patients are significantly higher than those in the normal liver tissues. HSP70 reportedly upregulates the migration and invasion of HCC. The AKT, p38 mitogen-activated protein kinase (MAPK), c-jun N-terminal kinase (JNK) and Rho-kinase signaling pathways regulate the transforming growth factor (TGF)-α-induced migration of human HCC-derived HuH7 cells. However, the exact mechanism underlying the role of HSP70 in growth factor-induced HCC migration remains unclear. Therefore, in the present study, the mechanism underlying the involvement of HSP70 in TGF-α-induced HCC cell migration was investigated. Treatment with the HSP70 inhibitors VER155008 and YM-08 and the downregulation of HSP70 protein were confirmed to significantly suppress the TGF-α-induced cell migration of HuH7 cells. Both VER155008 and YM-08 reduced the TGF-α-induced phosphorylation of AKT without affecting the phosphorylation of p38 MAPK, JNK or Rho-kinase. These results strongly suggest that HSP70 positively regulates the TGF-α-induced migration of HCC cells via the AKT signaling pathway.


HSP22 (HSPB8) positively regulates PGF2α-induced synthesis of interleukin-6 and vascular endothelial growth factor in osteoblasts.

  • Gen Kuroyanagi‎ et al.
  • Journal of orthopaedic surgery and research‎
  • 2021‎

Heat shock protein 22 (HSP22) belongs to class I of the small HSP family that displays ubiquitous expression in osteoblasts. We previously demonstrated that prostaglandin F2α (PGF2α), a potent bone remodeling factor, induces the synthesis of interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether HSP22 is implicated in the PGF2α-induced synthesis of IL-6 and VEGF and the mechanism of MC3T3-E1 cells.


Upregulation of TGF-β-induced HSP27 by HSP90 inhibitors in osteoblasts.

  • Gen Kuroyanagi‎ et al.
  • BMC musculoskeletal disorders‎
  • 2022‎

Heat shock protein (HSP) 90 functions as a molecular chaperone and is constitutively expressed and induced in response to stress in many cell types. We have previously demonstrated that transforming growth factor-β (TGF-β), the most abundant cytokine in bone cells, induces the expression of HSP27 through Smad2, p44/p42 mitogen-activated protein kinase (MAPK), p38 MAPK, and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in mouse osteoblastic MC3T3-E1 cells. This study investigated the effects of HSP90 on the TGF-β-induced HSP27 expression and the underlying mechanism in mouse osteoblastic MC3T3-E1 cells.


(-)-Epigallocatechin gallate but not chlorogenic acid suppresses EGF-stimulated migration of osteoblasts via attenuation of p38 MAPK activity.

  • Tetsu Kawabata‎ et al.
  • International journal of molecular medicine‎
  • 2018‎

Phenolic compounds provide health benefits in humans. A previous study by our group has indicated that the epidermal growth factor (EGF)‑induced migration of osteoblast‑like MC3T3‑E1 cells is mediated by the phosphorylation of p44/p42 mitogen‑activated protein (MAPK), p38 MAPK, stress‑activated protein kinase (SAPK)/c‑Jun N‑terminal kinase (JNK) and Akt, and that resveratrol, a major polyphenol in grape skin, suppresses the EGF‑induced migration by attenuating Akt and SAPK/JNK activation. In the present study, the effects of chlorogenic acid, a major phenolic acid in coffee, and (‑)‑epigallocatechin gallate (EGCG), a major flavonoid in green tea, on the EGF‑induced migration of MC3T3‑E1 cells were investigated. EGCG significantly reduced the EGF‑induced migration as evaluated by a Transwell migration assay and by a wound healing assay. However, chlorogenic acid failed to affect the EGF‑induced migration. The phosphorylation of p38 MAPK induced by EGF was significantly suppressed by EGCG; however, the EGF‑induced phosphorylation of p44/p42 MAP kinase, SAPK/JNK or Akt was not affected by EGCG. These results suggest that EGCG, but not chlorogenic acid, suppresses EGF‑induced osteoblast migration through inhibiting p38 MAPK activation.


cAMP/PKA enhances interleukin-1β-induced interleukin-6 synthesis through STAT3 in glial cells.

  • Kumiko Tanabe‎ et al.
  • Cellular signalling‎
  • 2016‎

We previously reported that interleukin (IL)-1β induces IL-6 synthesis via activation of the IκB/NFκB pathway, p38 mitogen-activated protein (MAP) kinase, stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and signal transducer and activator of transcription (STAT)3, but not p44/p42 MAP kinase in rat glioma cell line, C6 cells and that cAMP enhances the IL-6 synthesis. However, the details behind enhancement of IL-1β-induced IL-6 synthesis by cAMP remain to be elucidated. In the present study, we investigated the exact mechanism of cAMP underlying the amplification of IL-1β-induced IL-6 synthesis in C6 cells. 8-Bromo cAMP significantly enhanced IL-1β-induced STAT3 phosphorylation without affecting phosphorylation of IκB, p38 MAP kinase or SAPK/JNK. In addition, we found that forskolin, a direct activator of adenylyl cyclase, significantly enhanced IL-1β-induced STAT3 phosphorylation. Janus family of tyrosine kinase (JAK) inhibitor I markedly suppressed the amplification by 8-bromo cAMP of IL-1β-induced IL-6 release. IL-1β induced JAK2 phosphorylation, and FLLL32, a specific JAK2 inhibitor, significantly reduced IL-1β-stimulated IL-6 release. 4-Cyano-3-methylisoquinoline, an inhibitor of protein kinase A (PKA), significantly attenuated the enhancing effect of 8-bromo cAMP on IL-1β-induced STAT3 phosphorylation. 8-Bromo cAMP markedly induced JAK2 phosphorylation. PKA siRNA transfection reduced enhancement of IL-1β-induced IL-6 release by 8-bromo cAMP. In conclusion, our results strongly suggest that the adenylyl cyclase/cAMP/PKA pathway upregulates IL-1β-induced IL-6 synthesis through enhancement of the JAK2/STAT3 pathway in C6 glioma cells.


HSP70 inhibitors upregulate prostaglandin E1-induced synthesis of interleukin-6 in osteoblasts.

  • Gen Kuroyanagi‎ et al.
  • PloS one‎
  • 2022‎

Interleukin-6 (IL-6) is a pro-inflammatory and bone-resorptive cytokine that also regulates bone formation. We previously showed that prostaglandin E1 (PGE1) induces the synthesis of IL-6 by activating p44/p42 mitogen-activated protein kinase (MAPK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and p38 MAPK in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether heat shock protein 70 (HSP70), a molecular chaperone that coordinates protein folding and homeostasis, affects PGE1-stimulated IL-6 synthesis in MC3T3-E1 cells through the MAPK activation. The osteoblast-like MC3T3-E1 cells were treated with HSP70 inhibitors-VER-155008 and YM-08-, PD98059, SB203580 or SP600125 and then stimulated with PGE1. IL-6 synthesis was evaluated using an IL-6 enzyme-linked immunosorbent assay kit. IL-6 mRNA expression was measured by real-time RT-PCR. The phosphorylation of p38 MAPK was evaluated by Western blotting. We found that VER-155008, an HSP70 inhibitor, enhanced the PGE1-stimulated IL-6 release and IL-6 mRNA expression. YM-08, another HSP70 inhibitor, also enhanced PGE1-stimulated IL-6 release. PD98059, a p44/p42 MAPK inhibitor, and SP600125, a SAPK/JNK inhibitor, upregulated PGE1-stimulated IL-6 release. On the other hand, SB203580, a p38 MAPK inhibitor, suppressed PGE1-stimulated IL-6 release. YM-08 stimulated the PGE1-induced phosphorylation of p38 MAPK. SB203580 suppressed the amplification by YM-08 of the PGE1-stimulated IL-6 release. Our results suggest that HSP70 inhibitors upregulate the PGE1-stimulated IL-6 synthesis through p38 MAPK in osteoblasts and therefore affect bone remodeling.


SERMs (selective estrogen receptor modulator), acting as estrogen receptor β agonists in hepatocellular carcinoma cells, inhibit the transforming growth factor-α-induced migration via specific inhibition of AKT signaling pathway.

  • Rie Matsushima-Nishiwaki‎ et al.
  • PloS one‎
  • 2022‎

Selective estrogen receptor modulator (SERM) interacts with estrogen receptors and acts as both an agonist or an antagonist, depending on the target tissue. SERM is widely used as a safer hormone replacement therapeutic medicine for postmenopausal osteoporosis. Regarding hepatocellular carcinoma (HCC), accumulating evidence indicates gender differences in the development, and that men are at higher morbidity risk than premenopausal women, suggesting that estrogen protects against HCC. However, it remains unclear whether SERM affects the HCC progression. Previously, we have shown that transforming growth factor (TGF)-α promotes the migration of HCC cells via p38 mitogen-activated protein kinases (MAPK), c-Jun N-terminal kinase and AKT. In the present study, we investigated whether SERM such as tamoxifen, raloxifene and bazedoxifene, affects the HCC cell migration using human HCC-derived HuH7 cells. Raloxifene and bazedoxifene but not tamoxifen, significantly suppressed the TGF-α-induced HuH7 cell migration. ERB041 and DPN, estrogen receptor (ER) β agonists, inhibited the TGF-α-induced cell migration whereas PPT, an ERα agonist, did not show the suppressive effect on the cell migration. ERB041 attenuated the TGF-α-induced phosphorylation of AKT without affecting the phosphorylation of p38 MAPK and c-Jun N-terminal kinase. Raloxifene and bazedoxifene also inhibited the phosphorylation of AKT by TGF-α. Furthermore, PHTPP, an ERβ antagonist, significantly reversed the suppression by both raloxifene and bazedoxifene of the TGF-α-induced cell migration. Taken together, our results strongly indicate that raloxifene and bazedoxifene, SERMs, suppress the TGF-α-induced migration of HCC cells through ERβ-mediated inhibition of the AKT signaling pathway.


Smoking cessation affects human platelet activation induced by collagen.

  • Yuko Kito‎ et al.
  • Experimental and therapeutic medicine‎
  • 2019‎

It is firmly established that smoking is a risk factor of cardiovascular disease, stroke and peripheral vascular disease. Although smoking alters the hemostatic process, the influence of smoking on human platelet activation remains controversial. For patients undergoing surgery, cessation of smoking prior to the procedure is recommended as it increases the risk of postoperative morbidity or mortality. The presented study investigated the effects of smoking cessation on human platelet activation induced via collagen (n=19 patients). Blood samples were taken on four occasions: Before smoking cessation, and at 4, 8 and 12 weeks after smoking cessation. Platelet aggregation using citrated platelet-rich plasma (PRP) was monitored using a PA-200 aggregometer, which determined the size of platelet aggregates using laser scattering methods. A low dose of collagen (1 µg/ml) accelerated platelet aggregation at 4 or 8 weeks after smoking cessation when compared with results before cessation. After 12 weeks, levels of platelet aggregation induced by collagen were almost equal to those recorded prior to smoking cessation. The secretion levels of collagen-induced platelet-derived growth factor (PDGF)-AB at 4 or 8 weeks after smoking cessation were significantly higher than those before smoking was stopped. Furthermore, smoking cessation markedly strengthened the collagen-induced phosphorylation of p38 mitogen-activated protein (MAP) kinase after 4 weeks. The results of the current study indicated that smoking cessation causes temporary short-term human platelet hyper-activation. The further suggest that the incidence of complications due to human platelet hyper-reactivity may be lowered by considering the period of smoking abstinence.


Synergistic effect of collagen and CXCL12 in the low doses on human platelet activation.

  • Daiki Nakashima‎ et al.
  • PloS one‎
  • 2020‎

CXCL12, also known as stromal cell-derived factor-1, is a chemokine classified into CXC families, which exerts its function by binding to specific receptors called CXCR4 and CXCR7. Human platelets express CXCR4 and CXCR7 on the plasma membrane. It has been reported that CXCL12 potentiates to induce platelet aggregation in cooperation with agonists including collagen. However, the precise roles and mechanisms of CXCL12 in human platelet activation are not fully elucidated. In the present study, we investigated the effect of simultaneous stimulation with low doses of collagen and CXCL12 on the activation of human platelets. The simultaneous stimulation with collagen and CXCL12 induced the secretion of platelet-derived growth factor (PDGF)-AB and the release of soluble CD40 ligand (sCD40L) from human platelets in addition to their aggregation, despite the fact that the simultaneous stimulation with thrombin receptor-activating peptide (TRAP) or adenosine diphosphate (ADP), and CXCL12 had little effects on the platelet aggregation. The agonist of Glycoprotein (GP) Ⅵ convulxin and CXCL12 also induced platelet aggregation synergistically. The monoclonal antibody against CXCR4 but not CXCR7 suppressed the platelet aggregation induced by simultaneous stimulation with collagen and CXCL12. The phosphorylation of p38 mitogen-activated protein kinase (MAPK), but not p44/p42 MAPK, was induced by the simultaneous stimulation. In addition, the simultaneous stimulation with collagen and CXCL12 induced the phosphorylation of HSP27 and the subsequent release of phosphorylated-HSP27 from human platelets. SB203580, a specific inhibitor of p38 MAPK, attenuated the platelet aggregation, the phosphorylation of p38 MAPK and HSP27, the PDGF-AB secretion, the sCD40L release and the phosphorylated-HSP27 release induced by the simultaneous stimulation with collagen and CXCL12. These results strongly suggest that collagen and CXCL12 in low doses synergistically act to induce PDGF-AB secretion, sCD40L release and phosphorylated-HSP27 release from activated human platelets via p38 MAPK activation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: