Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 95 papers

Assessment of a Plasma Amyloid Probability Score to Estimate Amyloid Positron Emission Tomography Findings Among Adults With Cognitive Impairment.

  • Yan Hu‎ et al.
  • JAMA network open‎
  • 2022‎

The diagnostic evaluation for Alzheimer disease may be improved by a blood-based diagnostic test identifying presence of brain amyloid plaque pathology.


Phosphorylated tau-Aβ42 ratio as a continuous trait for biomarker discovery for early-stage Alzheimer's disease in multiplex immunoassay panels of cerebrospinal fluid.

  • Oscar Harari‎ et al.
  • Biological psychiatry‎
  • 2014‎

Identification of the physiologic changes that occur during the early stages of Alzheimer's disease (AD) may provide critical insights for the diagnosis, prognosis, and treatment of disease. Cerebrospinal fluid (CSF) biomarkers are a rich source of information that reflect the brain proteome.


Anti-tau antibody reduces insoluble tau and decreases brain atrophy.

  • Kiran Yanamandra‎ et al.
  • Annals of clinical and translational neurology‎
  • 2015‎

We previously found a strong reduction in tau pathology and insoluble tau in P301S tau transgenic mice following intracerebroventricular infusion of the anti-tau antibody HJ8.5. We sought to determine the effects of HJ8.5 in the same model following peripheral administration.


NMNAT3 is protective against the effects of neonatal cerebral hypoxia-ischemia.

  • Rafael Galindo‎ et al.
  • Annals of clinical and translational neurology‎
  • 2017‎

To determine whether the NAD+ biosynthetic protein, nicotinamide mononucleotide adenylyltransferase-3 (NMNAT3), is a neuroprotective inducible enzyme capable of decreasing cerebral injury after neonatal hypoxia-ischemia (H-I) and reducing glutamate receptor-mediated excitotoxic neurodegeneration of immature neurons.


Genome-wide association study of CSF levels of 59 alzheimer's disease candidate proteins: significant associations with proteins involved in amyloid processing and inflammation.

  • John S K Kauwe‎ et al.
  • PLoS genetics‎
  • 2014‎

Cerebrospinal fluid (CSF) 42 amino acid species of amyloid beta (Aβ42) and tau levels are strongly correlated with the presence of Alzheimer's disease (AD) neuropathology including amyloid plaques and neurodegeneration and have been successfully used as endophenotypes for genetic studies of AD. Additional CSF analytes may also serve as useful endophenotypes that capture other aspects of AD pathophysiology. Here we have conducted a genome-wide association study of CSF levels of 59 AD-related analytes. All analytes were measured using the Rules Based Medicine Human DiscoveryMAP Panel, which includes analytes relevant to several disease-related processes. Data from two independently collected and measured datasets, the Knight Alzheimer's Disease Research Center (ADRC) and Alzheimer's Disease Neuroimaging Initiative (ADNI), were analyzed separately, and combined results were obtained using meta-analysis. We identified genetic associations with CSF levels of 5 proteins (Angiotensin-converting enzyme (ACE), Chemokine (C-C motif) ligand 2 (CCL2), Chemokine (C-C motif) ligand 4 (CCL4), Interleukin 6 receptor (IL6R) and Matrix metalloproteinase-3 (MMP3)) with study-wide significant p-values (p<1.46×10-10) and significant, consistent evidence for association in both the Knight ADRC and the ADNI samples. These proteins are involved in amyloid processing and pro-inflammatory signaling. SNPs associated with ACE, IL6R and MMP3 protein levels are located within the coding regions of the corresponding structural gene. The SNPs associated with CSF levels of CCL4 and CCL2 are located in known chemokine binding proteins. The genetic associations reported here are novel and suggest mechanisms for genetic control of CSF and plasma levels of these disease-related proteins. Significant SNPs in ACE and MMP3 also showed association with AD risk. Our findings suggest that these proteins/pathways may be valuable therapeutic targets for AD. Robust associations in cognitively normal individuals suggest that these SNPs also influence regulation of these proteins more generally and may therefore be relevant to other diseases.


Association of Longitudinal Changes in Cerebrospinal Fluid Total Tau and Phosphorylated Tau 181 and Brain Atrophy With Disease Progression in Patients With Alzheimer Disease.

  • Jorge J Llibre-Guerra‎ et al.
  • JAMA network open‎
  • 2019‎

The amyloid/tau/neurodegeneration (A/T/N) framework uses cerebrospinal fluid (CSF) levels of total tau (tTau) as a marker of neurodegeneration and CSF levels of phosphorylated tau 181 (pTau181) as a marker of tau tangles. However, it is unclear whether CSF levels of tTau and pTau181 have similar or different trajectories over the course of Alzheimer disease.


Translocator protein in late stage Alzheimer's disease and Dementia with Lewy bodies brains.

  • Jinbin Xu‎ et al.
  • Annals of clinical and translational neurology‎
  • 2019‎

Increased translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), in glial cells of the brain has been used as a neuroinflammation marker in the early and middle stages of neurodegenerative diseases, such as Alzheimer's disease (AD) and Dementia with Lewy Bodies (DLB). In this study, we investigated the changes in TSPO density with respect to late stage AD and DLB.


Altered sleep and EEG power in the P301S Tau transgenic mouse model.

  • Jerrah K Holth‎ et al.
  • Annals of clinical and translational neurology‎
  • 2017‎

Sleep disturbances are prevalent in human tauopathies yet despite the importance of sleep, little is known about its relationship with tau pathology. Here, we investigate this interaction by analyzing sleep and tau pathology throughout tauopathy disease progression in P301S human tau transgenic mice.


Analysis of in vivo turnover of tau in a mouse model of tauopathy.

  • Kaoru Yamada‎ et al.
  • Molecular neurodegeneration‎
  • 2015‎

Intracellular accumulation of tau as neurofibrillary tangles (NFTs) is the hallmark of Alzheimer's disease (AD) as well as in other tauopathies. Tau is present not only in the cytoplasm but also in the extracellular space such as cerebrospinal fluid (CSF) and brain interstitial fluid (ISF). Although clearance is one critical parameter leading to such intracellular/extracellular tau accumulation, in vivo turnover of tau has not been well characterized. The current study has attempted to precisely determine in vivo turnover rates of tau utilizing tet-off regulatable mice. In particular, we assessed intracellular tau and extracellular tau, soluble tau, insoluble tau and phosphorylated tau at certain sites utilizing a combination of in vivo microdialysis, biochemical analysis and specific ELISAs recognizing each species. To examine the effect of a tauopathy-associated mutation on tau clearance, half-lives of various tau species were compared between the mice with a FTDP-17 mutation that induces β-sheet formation, ΔK280 mutation (pro-aggregant mice) and control mice with additional β-sheet breaking mutations (anti-aggregant mice).


TREM2 drives microglia response to amyloid-β via SYK-dependent and -independent pathways.

  • Shoutang Wang‎ et al.
  • Cell‎
  • 2022‎

Genetic studies have highlighted microglia as pivotal in orchestrating Alzheimer's disease (AD). Microglia that adhere to Aβ plaques acquire a transcriptional signature, "disease-associated microglia" (DAM), which largely emanates from the TREM2-DAP12 receptor complex that transmits intracellular signals through the protein tyrosine kinase SYK. The human TREM2R47H variant associated with high AD risk fails to activate microglia via SYK. We found that SYK-deficient microglia cannot encase Aβ plaques, accelerating brain pathology and behavioral deficits. SYK deficiency impaired the PI3K-AKT-GSK-3β-mTOR pathway, incapacitating anabolic support required for attaining the DAM profile. However, SYK-deficient microglia proliferated and advanced to an Apoe-expressing prodromal stage of DAM; this pathway relied on the adapter DAP10, which also binds TREM2. Thus, microglial responses to Aβ involve non-redundant SYK- and DAP10-pathways. Systemic administration of an antibody against CLEC7A, a receptor that directly activates SYK, rescued microglia activation in mice expressing the TREM2R47H allele, unveiling new options for AD immunotherapy.


Tau and Aβ imaging, CSF measures, and cognition in Alzheimer's disease.

  • Matthew R Brier‎ et al.
  • Science translational medicine‎
  • 2016‎

Alzheimer's disease (AD) is characterized by two molecular pathologies: cerebral β-amyloidosis in the form of β-amyloid (Aβ) plaques and tauopathy in the form of neurofibrillary tangles, neuritic plaques, and neuropil threads. Until recently, only Aβ could be studied in humans using positron emission tomography (PET) imaging owing to a lack of tau PET imaging agents. Clinical pathological studies have linked tau pathology closely to the onset and progression of cognitive symptoms in patients with AD. We report PET imaging of tau and Aβ in a cohort of cognitively normal older adults and those with mild AD. Multivariate analyses identified unique disease-related stereotypical spatial patterns (topographies) for deposition of tau and Aβ. These PET imaging tau and Aβ topographies were spatially distinct but correlated with disease progression. Cerebrospinal fluid measures of tau, often used to stage preclinical AD, correlated with tau deposition in the temporal lobe. Tau deposition in the temporal lobe more closely tracked dementia status and was a better predictor of cognitive performance than Aβ deposition in any region of the brain. These data support models of AD where tau pathology closely tracks changes in brain function that are responsible for the onset of early symptoms in AD.


ApoE facilitates the microglial response to amyloid plaque pathology.

  • Jason D Ulrich‎ et al.
  • The Journal of experimental medicine‎
  • 2018‎

One of the hallmarks of Alzheimer's disease is the presence of extracellular diffuse and fibrillar plaques predominantly consisting of the amyloid-β (Aβ) peptide. Apolipoprotein E (ApoE) influences the deposition of amyloid pathology through affecting the clearance and aggregation of monomeric Aβ in the brain. In addition to influencing Aβ metabolism, increasing evidence suggests that apoE influences microglial function in neurodegenerative diseases. Here, we characterize the impact that apoE has on amyloid pathology and the innate immune response in APPPS1ΔE9 and APPPS1-21 transgenic mice. We report that Apoe deficiency reduced fibrillar plaque deposition, consistent with previous studies. However, fibrillar plaques in Apoe-deficient mice exhibited a striking reduction in plaque compaction. Hyperspectral fluorescent imaging using luminescent conjugated oligothiophenes identified distinct Aβ morphotypes in Apoe-deficient mice. We also observed a significant reduction in fibrillar plaque-associated microgliosis and activated microglial gene expression in Apoe-deficient mice, along with significant increases in dystrophic neurites around fibrillar plaques. Our results suggest that apoE is critical in stimulating the innate immune response to amyloid pathology.


TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model.

  • Yaming Wang‎ et al.
  • Cell‎
  • 2015‎

Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial surface receptor that triggers intracellular protein tyrosine phosphorylation. Recent genome-wide association studies have shown that a rare R47H mutation of TREM2 correlates with a substantial increase in the risk of developing Alzheimer's disease (AD). To address the basis for this genetic association, we studied TREM2 deficiency in the 5XFAD mouse model of AD. We found that TREM2 deficiency and haploinsufficiency augment β-amyloid (Aβ) accumulation due to a dysfunctional response of microglia, which fail to cluster around Aβ plaques and become apoptotic. We further demonstrate that TREM2 senses a broad array of anionic and zwitterionic lipids known to associate with fibrillar Aβ in lipid membranes and to be exposed on the surface of damaged neurons. Remarkably, the R47H mutation impairs TREM2 detection of lipid ligands. Thus, TREM2 detects damage-associated lipid patterns associated with neurodegeneration, sustaining the microglial response to Aβ accumulation.


Task-evoked fMRI changes in attention networks are associated with preclinical Alzheimer's disease biomarkers.

  • Brian A Gordon‎ et al.
  • Neurobiology of aging‎
  • 2015‎

There is a growing emphasis on examining preclinical levels of Alzheimer's disease (AD)-related pathology in the absence of cognitive impairment. Previous work examining biomarkers has focused almost exclusively on memory, although there is mounting evidence that attention also declines early in disease progression. In the current experiment, 2 attentional control tasks were used to examine alterations in task-evoked functional magnetic resonance imaging data related to biomarkers of AD pathology. Seventy-one cognitively normal individuals (females = 44, mean age = 63.5 years) performed 2 attention-demanding cognitive tasks in a design that modeled both trial- and task-level functional magnetic resonance imaging changes. Biomarkers included amyloid β42, tau, and phosphorylated tau measured from cerebrospinal fluid and positron emission tomography measures of amyloid deposition. Both tasks elicited widespread patterns of activation and deactivation associated with large task-level manipulations of attention. Importantly, results from both tasks indicated that higher levels of tau and phosphorylated tau pathologies were associated with block-level overactivations of attentional control areas. This suggests early alteration in attentional control with rising levels of AD pathology.


Apolipoprotein E mediation of neuro-inflammation in a murine model of multiple sclerosis.

  • Soomin Shin‎ et al.
  • Journal of neuroimmunology‎
  • 2014‎

Apolipoprotein E (ApoE) functions as a ligand in receptor-mediated endocytosis of lipoprotein particles and has been demonstrated to play a role in antigen presentation. To explore the contribution of ApoE during autoimmune central nervous system (CNS) demyelination, we examined the clinical, cellular immune function, and pathologic consequences of experimental autoimmune encephalomyelitis (EAE) induction in ApoE knockout (ApoE(-/-)) mice. We observed reduced clinical severity of EAE in ApoE(-/-) mice in comparison to WT mice that was concomitant with an early reduction of dendritic cells (DCs) followed by a reduction of additional innate cells in the spinal cord at the peak of disease without any differences in axonal damage. While T cell priming was enhanced in ApoE(-/-) mice, reduced severity of EAE was also observed in ApoE(-/-) recipients of encephalitogenic wild type T cells. Expression of ApoE during EAE was elevated within the CNS of wild type mice, particularly by innate cells such as DCs. Overall, ApoE promotes clinical EAE, likely by mediation of inflammation localized within the CNS.


Longitudinal decreases in multiple cerebrospinal fluid biomarkers of neuronal injury in symptomatic late onset Alzheimer's disease.

  • Courtney L Sutphen‎ et al.
  • Alzheimer's & dementia : the journal of the Alzheimer's Association‎
  • 2018‎

Individuals in early stages of Alzheimer's disease are a targeted population for secondary prevention trials aimed at preserving normal cognition. Understanding within-person biomarker(s) change over time is critical for trial enrollment and design.


KATP channels are necessary for glucose-dependent increases in amyloid-β and Alzheimer's disease-related pathology.

  • John Grizzanti‎ et al.
  • JCI insight‎
  • 2023‎

Elevated blood glucose levels, or hyperglycemia, can increase brain excitability and amyloid-β (Aβ) release, offering a mechanistic link between type 2 diabetes and Alzheimer's disease (AD). Since the cellular mechanisms governing this relationship are poorly understood, we explored whether ATP-sensitive potassium (KATP) channels, which couple changes in energy availability with cellular excitability, play a role in AD pathogenesis. First, we demonstrate that KATP channel subunits Kir6.2/KCNJ11 and SUR1/ABCC8 were expressed on excitatory and inhibitory neurons in the human brain, and cortical expression of KCNJ11 and ABCC8 changed with AD pathology in humans and mice. Next, we explored whether eliminating neuronal KATP channel activity uncoupled the relationship between metabolism, excitability, and Aβ pathology in a potentially novel mouse model of cerebral amyloidosis and neuronal KATP channel ablation (i.e., amyloid precursor protein [APP]/PS1 Kir6.2-/- mouse). Using both acute and chronic paradigms, we demonstrate that Kir6.2-KATP channels are metabolic sensors that regulate hyperglycemia-dependent increases in interstitial fluid levels of Aβ, amyloidogenic processing of APP, and amyloid plaque formation, which may be dependent on lactate release. These studies identify a potentially new role for Kir6.2-KATP channels in AD and suggest that pharmacological manipulation of Kir6.2-KATP channels holds therapeutic promise in reducing Aβ pathology in patients with diabetes or prediabetes.


AAV-mediated expression of anti-tau scFvs decreases tau accumulation in a mouse model of tauopathy.

  • Christina Ising‎ et al.
  • The Journal of experimental medicine‎
  • 2017‎

Tauopathies are characterized by the progressive accumulation of hyperphosphorylated, aggregated forms of tau. Our laboratory has previously demonstrated that passive immunization with an anti-tau antibody, HJ8.5, decreased accumulation of pathological tau in a human P301S tau-expressing transgenic (P301S-tg) mouse model of frontotemporal dementia/tauopathy. To investigate whether the Fc domain of HJ8.5 is required for the therapeutic effect, we engineered single-chain variable fragments (scFvs) derived from HJ8.5 with variable linker lengths, all specific to human tau. Based on different binding properties, we selected two anti-tau scFvs and tested their efficacy in vivo by adeno-associated virus-mediated gene transfer to the brain of P301S-tg mice. The scFvs significantly reduced levels of hyperphosphorylated, aggregated tau in brain tissue of P301S-tg mice, associated with a decrease in detergent-soluble tau species. Interestingly, these mice showed substantial levels of scFvs in the cerebrospinal fluid without significant effects on total extracellular tau levels. Therefore, our study provides a novel strategy for anti-tau immunotherapeutics that potentially limits a detrimental proinflammatory response.


APOE3ch alters microglial response and suppresses Aβ-induced tau seeding and spread.

  • Yun Chen‎ et al.
  • Cell‎
  • 2024‎

A recent case report described an individual who was a homozygous carrier of the APOE3 Christchurch (APOE3ch) mutation and resistant to autosomal dominant Alzheimer's Disease (AD) caused by a PSEN1-E280A mutation. Whether APOE3ch contributed to the protective effect remains unclear. We generated a humanized APOE3ch knock-in mouse and crossed it to an amyloid-β (Aβ) plaque-depositing model. We injected AD-tau brain extract to investigate tau seeding and spreading in the presence or absence of amyloid. Similar to the case report, APOE3ch expression resulted in peripheral dyslipidemia and a marked reduction in plaque-associated tau pathology. Additionally, we observed decreased amyloid response and enhanced microglial response around plaques. We also demonstrate increased myeloid cell phagocytosis and degradation of tau aggregates linked to weaker APOE3ch binding to heparin sulfate proteoglycans. APOE3ch influences the microglial response to Aβ plaques, which suppresses Aβ-induced tau seeding and spreading. The results reveal new possibilities to target Aβ-induced tauopathy.


TREM2 Maintains Microglial Metabolic Fitness in Alzheimer's Disease.

  • Tyler K Ulland‎ et al.
  • Cell‎
  • 2017‎

Elevated risk of developing Alzheimer's disease (AD) is associated with hypomorphic variants of TREM2, a surface receptor required for microglial responses to neurodegeneration, including proliferation, survival, clustering, and phagocytosis. How TREM2 promotes such diverse responses is unknown. Here, we find that microglia in AD patients carrying TREM2 risk variants and TREM2-deficient mice with AD-like pathology have abundant autophagic vesicles, as do TREM2-deficient macrophages under growth-factor limitation or endoplasmic reticulum (ER) stress. Combined metabolomics and RNA sequencing (RNA-seq) linked this anomalous autophagy to defective mammalian target of rapamycin (mTOR) signaling, which affects ATP levels and biosynthetic pathways. Metabolic derailment and autophagy were offset in vitro through Dectin-1, a receptor that elicits TREM2-like intracellular signals, and cyclocreatine, a creatine analog that can supply ATP. Dietary cyclocreatine tempered autophagy, restored microglial clustering around plaques, and decreased plaque-adjacent neuronal dystrophy in TREM2-deficient mice with amyloid-β pathology. Thus, TREM2 enables microglial responses during AD by sustaining cellular energetic and biosynthetic metabolism.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: