Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 31 papers

Synthesis and Evaluation of the Antitumor Activity of Novel 1-(4-Substituted phenyl)-2-ethyl Imidazole Apoptosis Inducers In Vitro.

  • Zhen-Wang Li‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Novel imidazole derivatives were designed, prepared, and evaluated in vitro for antitumor activity. The majority of the tested derivatives showed improved antiproliferative activity compared to the positive control drugs 5-FU and MTX. Among them, compound 4f exhibited outstanding antiproliferative activity against three cancer cell lines and was considerably more potent than both 5-FU and MTX. In particular, the selectivity index indicated that the tolerance of normal L-02 cells to 4f was 23-46-fold higher than that of tumor cells. This selectivity was significantly higher than that exhibited by the positive control drugs. Furthermore, compound 4f induced cell apoptosis by increasing the protein expression levels of Bax and decreasing those of Bcl-2 in a time-dependent manner. Therefore, 4f could be a potential candidate for the development of a novel antitumor agent.


Neuregulin‑1 protects cardiac function in septic rats through multiple targets based on endothelial cells.

  • Wen Kang‎ et al.
  • International journal of molecular medicine‎
  • 2019‎

The primary mechanism underlying sepsis‑induced cardiac dysfunction is loss of endothelial barrier function. Neuregulin‑1 (NRG‑1) exerts its functions on multiple targets. The present study aimed to identify the protective effects of NRG‑1 in myocardial cells, including endothelial, anti‑inflammatory and anti‑apoptotic effects. Subsequent to lipopolysaccharide (LPS)‑induced sepsis, rats were administered with either a vehicle or recombinant human NRG‑1 (rhNRG‑1; 10 µg/kg/day) for one or two days. H9c2 cardiomyoblasts were subjected to LPS (10 µg/ml) treatment for 12 and 24 h with or without rhNRG‑1 (1 µg/ml). Survival rates were recorded at 48 h following sepsis induction. The hemodynamic method was performed to evaluate cardiac function, and myocardial morphology was observed. Von Willebrand Factor levels were detected using an immunofluorescence assay. Serum levels of tumor necrosis factor α, interleukin‑6, intercellular cell adhesion molecule‑1 and vascular endothelial growth factor were detected using an enzyme‑linked immunosorbent assay; the reductase method was performed to detect serum nitric oxide levels. Apoptosis rates were determined using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Ras homolog family member A (RhoA) and Rho‑associated protein kinase 1 (ROCK1) protein levels were assessed using western blotting. Transmission electron microscopy was used to observe endothelial cells and myocardial ultrastructure changes. Results revealed that NRG‑1‑treated rats displayed less myocardial damage compared with sham rats. NRG‑1 administration strengthened the barrier function of the vasculature, reduced the secretion of endothelial‑associated biomarkers and exerted anti‑inflammatory and anti‑apoptotic effects. In addition, NRG‑1 inhibited RhoA and ROCK1 signaling. The results revealed that NRG‑1 improves cardiac function, increases the survival rate of septic rats and exerts protective effects via multiple targets throughout the body. The present results contribute to the development of a novel approach to reverse damage to myocardial and endothelial cells during sepsis.


Copper transporter Ctr1 contributes to enhancement of the sensitivity of cisplatin in esophageal squamous cell carcinoma.

  • Xin Wang‎ et al.
  • Translational oncology‎
  • 2023‎

Increasing evidence has demonstrated that Ctr1 plays a crucial role in the regulation of cisplatin uptake in a variety of tumors. The purpose of this study was to investigate its role in mediating cisplatin sensitivity in ESCC cells. Immunohistochemistry (IHC), In situ hybridization (ISH) and semi-quantitative RT-PCR were used to detect Ctr1 expressions in ESCC tissues. qRT-PCR and Western blot was performed to investigate the levels of Ctr1 mRNA and protein in ESCC cells. CCK-8, Flow cytometry and Transwell chamber assay were carried out to examine cell proliferation, apoptosis, migration and invasion abilities in ESCC cells. We found that ESCC tissues and cells had higher Ctr1 level than normal tissues and Het-1A cell. Ctr1 expression was correlated with histological grade, invasion depth, TNM staging and lymph node metastasis in ESCC patients. Ctr1 depletion reduced the suppressive role of proliferation, migration and invasion as well as the inductive role of cell apoptosis and Caspase-3 activity evoked by cisplatin, whereas Ctr1 upregulation combined with cisplatin exerted the synergistic role in regulation of proliferation, apoptosis, Caspase-3 activity, migration and invasion in ESCC. In conclusion, Ctr1 is implicated in ESCC development and progression and its expression may be a novel predictor for assessment of cisplatin sensitivity in ESCC.


Exosomes derived from fibrinogen-like protein 1-overexpressing bone marrow-derived mesenchymal stem cells ameliorates rheumatoid arthritis.

  • Wenqiang Xu‎ et al.
  • Bioengineered‎
  • 2022‎

Rheumatoid arthritis (RA) is a most common chronic joint disease belonging to inflammatory autoimmune disease. The aim of this study was to determine the role and mechanism of bone marrow mesenchymal stem cells (BMSCs)-derived exosomes and fibrinogen-like protein 1 (FGL1) overexpression exosomes shuttled by BMSCs (FGL1-Exos) on RA. All of the exosomes were visualized by transmission electron microscope (TEM) and the characteristic proteins were detected by western blot. To investigate the therapeutic effect of FGL1-Exos, RA-FLSs were activated by TNF-α and RA rat model was established by collagen incomplete Freund's adjuvant. Cell viability, apoptosis, inflammation factors, and protein levels were detected by CCK-8, flow cytometry, enzyme-linked immunosorbent assay and western blot, respectively. Hematoxylin and eosin and safranin O staining were used to detect the histopathology changes. Cell apoptosis and FGL1 expression in knee joint were detected by immunofluorescence. The results showed that FGL1-Exos could inhibit the cell viability meanwhile increase the cell apoptosis in RA-FLSs. Meanwhile, FGL1-Exos could effectively suppress the inflammation score, joint destruction, and inflammatory response in RA rat model. FGL1-Exos directly inhibited cell apoptosis of RA-FLSs and RA rat model by suppressing the inflammatory cytokines, specific rheumatoid markers, immunological markers meanwhile meditating the NF-κB pathway. Our results indicate that FGL1 was a therapeutic potential target in RA therapy.


A one-two punch targeting reactive oxygen species and fibril for rescuing Alzheimer's disease.

  • Jiefei Wang‎ et al.
  • Nature communications‎
  • 2024‎

Toxic amyloid-beta (Aβ) plaque and harmful inflammation are two leading symptoms of Alzheimer's disease (AD). However, precise AD therapy is unrealizable due to the lack of dual-targeting therapy function, poor BBB penetration, and low imaging sensitivity. Here, we design a near-infrared-II aggregation-induced emission (AIE) nanotheranostic for precise AD therapy. The anti-quenching emission at 1350 nm accurately monitors the in vivo BBB penetration and specifically binding of nanotheranostic with plaques. Triggered by reactive oxygen species (ROS), two encapsulated therapeutic-type AIE molecules are controllably released to activate a self-enhanced therapy program. One specifically inhibits the Aβ fibrils formation, degrades Aβ fibrils, and prevents the reaggregation via multi-competitive interactions that are verified by computational analysis, which further alleviates the inflammation. Another effectively scavenges ROS and inflammation to remodel the cerebral redox balance and enhances the therapy effect, together reversing the neurotoxicity and achieving effective behavioral and cognitive improvements in the female AD mice model.


Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction.

  • Naiara Akizu‎ et al.
  • Nature genetics‎
  • 2015‎

Pediatric-onset ataxias often present clinically as developmental delay and intellectual disability, with prominent cerebellar atrophy as a key neuroradiographic finding. Here we describe a new clinically distinguishable recessive syndrome in 12 families with cerebellar atrophy together with ataxia, coarsened facial features and intellectual disability, due to truncating mutations in the sorting nexin gene SNX14, encoding a ubiquitously expressed modular PX domain-containing sorting factor. We found SNX14 localized to lysosomes and associated with phosphatidylinositol (3,5)-bisphosphate, a key component of late endosomes/lysosomes. Patient-derived cells showed engorged lysosomes and a slower autophagosome clearance rate upon autophagy induction by starvation. Zebrafish morphants for snx14 showed dramatic loss of cerebellar parenchyma, accumulation of autophagosomes and activation of apoptosis. Our results characterize a unique ataxia syndrome due to biallelic SNX14 mutations leading to lysosome-autophagosome dysfunction.


Inhibition of KPNB1 Inhibits Proliferation and Promotes Apoptosis of Chronic Myeloid Leukemia Cells Through Regulation of E2F1.

  • Teng Wang‎ et al.
  • OncoTargets and therapy‎
  • 2019‎

Karyopherin-β1 (KPNB1) belongs to the karyopherin superfamily, which functions as shuttling proteins from the cytoplasm to nuclear. A high level of KPNB1 has been reported in various cancers which promotes cell proliferation and inhibits apoptosis. However, the role of KPNB1 in chronic myeloid leukemia (CML) remains uncertain.


The Conditioned Medium of Lactobacillus rhamnoides GG Regulates Microglia/Macrophage Polarization and Improves Functional Recovery after Spinal Cord Injury in Rats.

  • Fangqi Lin‎ et al.
  • BioMed research international‎
  • 2021‎

Lactobacillus rhamnoides, a human intestinal colonizer, can act through various pathways to induce microglia/macrophages to produce cytokines and to polarize microglia/macrophages to different phenotypes to reduce the inflammatory response. In this article, we evaluated the treatment potential of the Lactobacillus rhamnoides GG conditioned medium (LGG-CM) in rat model with SCI (acute spinal cord injury), including functional, neurophysiological, and histological outcomes and the underlying neuroprotective mechanisms. In our experiment, LGG-CM (30 mg/kg) was injected directly into the injury site in rats immediately after SCI. Measured by the BBB scale (Basso, Beattie, and Bresnahan locomotor rating scale) and inclined plane test, rats in the LGG-CM-treated group showed better locomotor scores. Moreover, compared to the vehicle treatment group, LGG-CM increased the mRNA level of the M2 marker (CD206), and decreased that of the M1 marker (iNOS). Western blot assays showed that LGG-CM-treated SCI rats had a higher grayscale ratio of p65 and a lower ratio of p-IκBα/IκBα. Our study shows that local injection of LGG-CM after acute SCI can inhibit inflammatory responses and improve motor function recovery. These effects may be related with the inhibition to the NF-κB (The nuclear factor-kappa B) signal pathway which leads to M2 microglia/macrophage polarization.


LINC00514 promotes lipogenesis and tumor progression in esophageal squamous cell carcinoma by sponging miR‑378a‑5p to enhance SPHK1 expression.

  • Xin Wang‎ et al.
  • International journal of oncology‎
  • 2021‎

Increasing evidence has demonstrated that long non‑coding RNAs serve pivotal roles in tumor development, progression, metastasis and metabolism. However, to the best of our knowledge, the roles and molecular mechanisms of long intergenic nonprotein‑coding RNA 00514 (LINC00514) in esophageal squamous cell carcinoma (ESCC) remain unknown. The present study found that LINC00514 and sphingosine kinase 1 (SPHK1) were both upregulated in ESCC tissues and cells, and their high expression levels were closely associated with Tumor‑Node‑Metastasis stage, lymph node metastasis and poor prognosis of patients with ESCC. Functionally, knockdown of LINC00514 inhibited cell proliferation and invasion, and led to the downregulation of lipogenesis‑related proteins, including SPHK1, fatty acid synthase, acetyl‑coenzyme (Co)A carboxylase α and stearoyl‑CoA desaturase 1, whereas LINC00514 overexpression promoted cell proliferation and invasion in ESCC KYSE150 and KYSE30 cells, and upregulated expression of lipogenesis‑related proteins. Mechanistically, LINC00514 functioned as a competing endogenous RNA by sponging microRNA (miR)‑378a‑5p, resulting in the upregulation of SPHK1, which was accompanied by the activation of lipogenesis‑related pathways, to promote ESCC cell proliferation and invasion. Taken together, these findings suggest that LINC00514 may participate in ESCC lipogenesis, and targeting the LINC00514/miR‑378a‑5p/SPHK1 signaling axis may be a novel and promising therapeutic strategy for management of patients with ESCC.


Therapeutic efficacy of Schistosoma japonicum cystatin on sepsis-induced cardiomyopathy in a mouse model.

  • Shifang Gao‎ et al.
  • Parasites & vectors‎
  • 2020‎

Myocardial dysfunction is one of the most common complications of multiple organ failure in septic shock and significantly increases mortality in patients with sepsis. Although many studies having confirmed that helminth-derived proteins have strong immunomodulatory functions and could treat inflammatory diseases, there is no report on the therapeutic effect of Schistosoma japonicum-produced cystatin (Sj-Cys) on sepsis-induced cardiac dysfunction.


Male-Biased gga-miR-2954 Regulates Myoblast Proliferation and Differentiation of Chicken Embryos by Targeting YY1.

  • Xiuxue Dong‎ et al.
  • Genes‎
  • 2021‎

Previous studies have shown that gga-miR-2954 was highly expressed in the gonads and other tissues of male chickens, including muscle tissue. Yin Yang1 (YY1), which has functions in mammalian skeletal muscle development, was predicted to be a target gene of gga-miR-2954. The purpose of this study was to investigate whether gga-miR-2954 plays a role in skeletal muscle development by targeting YY1, and evaluate its function in the sexual dimorphism development of chicken muscle. Here, all the temporal and spatial expression profiles in chicken embryonic muscles showed that gga-miR-2954 is highly expressed in males and mainly localized in cytoplasm. Gga-miR-2954 exhibited upregulated expression of in vitro myoblast differentiation stages. Next, through the overexpression and loss-of-function experiments performed in chicken primary myoblasts, we found that gga-miR-2954 inhibited myoblast proliferation but promoted differentiation. During myogenesis, gga-miR-2954 could suppress the expression of YY1, which promoted myoblast proliferation and inhibited the process of myoblast cell differentiation into multinucleated myotubes. Overall, these findings reveal a novel role of gga-miR-2954 in skeletal muscle development through its function of the myoblast proliferation and differentiation by suppressing the expression of YY1. Moreover, gga-miR-2954 may contribute to the sex difference in chicken muscle development.


The Regulatory Mechanism and Biological Significance of Mitochondrial Calcium Uniporter in the Migration, Invasion, Angiogenesis and Growth of Gastric Cancer.

  • Xiaofei Wang‎ et al.
  • OncoTargets and therapy‎
  • 2020‎

Increasing evidences suggest that mitochondrial calcium uniporter (MCU), a selective channel responsible for mitochondrial Ca2+ uptake, is involved in the progression of several cancers. In this study, we aimed to observe the clinical implications and biological functions of MCU in gastric cancer.


Exosomes Derived from Human Bone Marrow Mesenchymal Stem Cells Stimulated by Deferoxamine Accelerate Cutaneous Wound Healing by Promoting Angiogenesis.

  • Jianing Ding‎ et al.
  • BioMed research international‎
  • 2019‎

The exosomes are derived from mesenchymal stem cells (MSCs) and may be potentially used as an alternative for cell therapy, for treating diabetic wounds, and aid in angiogenesis. This study, aimed to investigate whether exosomes originated from bone marrow-derived MSCs (BMSCs) preconditioned by deferoxamine (DFO-Exos) exhibited superior proangiogenic property in wound repair and to explore the underlying mechanisms involved. Human umbilical vein endothelial cells (HUVECs) were used for assays involving cell proliferation, scratch wound healing, and tube formation. To test the effects in vivo, streptozotocin-induced diabetic rats were established. Two weeks after the procedure, histological analysis was used to measure wound-healing effects, and the neovascularization was evaluated as well. Our findings demonstrated that DFO-Exos activate the PI3K/AKT signaling pathway via miR-126 mediated PTEN downregulation to stimulate angiogenesis in vitro. This contributed to enhanced wound healing and angiogenesis in streptozotocin-induced diabetic rats in vivo. Our results suggest that, in cell-free therapies, exosomes derived from DFO preconditioned stem cells manifest increased proangiogenic ability.


Lentivirus vector-mediated knockdown of Sox9 shows neuroprotective effects on light damage in rat retinas.

  • Xin Wang‎ et al.
  • Molecular vision‎
  • 2019‎

To investigate whether reduced Sox9 function exerts neuroprotection in light-induced retinal damage in rats and to explore the potential mechanism behind it.


Weighted Gene Co-expression Network Analysis Identifies CALD1 as a Biomarker Related to M2 Macrophages Infiltration in Stage III and IV Mismatch Repair-Proficient Colorectal Carcinoma.

  • Hang Zheng‎ et al.
  • Frontiers in molecular biosciences‎
  • 2021‎

Immunotherapy has achieved efficacy for advanced colorectal cancer (CRC) patients with a mismatch-repair-deficient (dMMR) subtype. However, little immunotherapy efficacy was observed in patients with the mismatch repair-proficient (pMMR) subtype, and hence, identifying new immune therapeutic targets is imperative for those patients. In this study, transcriptome data of stage III/IV CRC patients were retrieved from the Gene Expression Omnibus database. The CIBERSORT algorithm was used to quantify immune cellular compositions, and the results revealed that M2 macrophage fractions were higher in pMMR patients as compared with those with the dMMR subtype; moreover, pMMR patients with higher M2 macrophage fractions experienced shorter overall survival (OS). Subsequently, weighted gene co-expression network analysis and protein-protein interaction network analysis identified six hub genes related to M2 macrophage infiltrations in pMMR CRC patients: CALD1, COL6A1, COL1A2, TIMP3, DCN, and SPARC. Univariate and multivariate Cox regression analyses then determined CALD1 as the independent prognostic biomarker for OS. CALD1 was upregulated specifically the in CMS4 CRC subtype, and single-sample Gene Set Enrichment Analysis (ssGSEA) revealed that CALD1 was significantly correlated with angiogenesis and TGF-β signaling gene sets enrichment scores in stage III/IV pMMR CRC samples. The Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithm and correlation analysis revealed that CALD1 was significantly associated with multiple immune and stromal components in a tumor microenvironment. In addition, GSEA demonstrated that high expression of CALD1 was significantly correlated with antigen processing and presentation, chemokine signaling, leukocyte transendothelial migration, vascular smooth muscle contraction, cytokine-cytokine receptor interaction, cell adhesion molecules, focal adhesion, MAPK, and TGF-beta signaling pathways. Furthermore, the proliferation, invasion, and migration abilities of cancer cells were suppressed after reducing CALD1 expression in CRC cell lines. Taken together, multiple bioinformatics analyses and cell-level assays demonstrated that CALD1 could serve as a prognostic biomarker and a prospective therapeutic target for stage III/IV pMMR CRCs.


Transcriptomics Study to Determine the Molecular Mechanism by which sIL-13Rα2-Fc Inhibits Caudal Intervertebral Disc Degeneration in Rats.

  • Xin Wang‎ et al.
  • BioMed research international‎
  • 2020‎

Intervertebral disc degeneration is related to tissue fibrosis. ADAMTS can degrade the important components of the ECM during the process of intervertebral disc degeneration, ultimately resulting in the loss of intervertebral disc function. sIL-13Rα2-Fc can inhibit fibrosis and slow down the degeneration process, but the mechanism involved remains unclear.


Autoantibody-Mediated Erythrophagocytosis Increases Tuberculosis Susceptibility in HIV Patients.

  • Youchao Dai‎ et al.
  • mBio‎
  • 2020‎

Macrophage dysfunction is associated with increased tuberculosis (TB) susceptibility in patients with human immunodeficiency virus (HIV) infection. However, the mechanisms underlying how HIV infection impairs macrophage function are unclear. Here, we found that levels of autoantibodies against red blood cells (RBCs) were significantly elevated in patients with HIV as determined by direct antiglobulin test (DAT). DAT positivity was significantly associated with TB incidence in both univariate and multivariate analyses (odds ratio [OR] = 11.96 [confidence interval {CI}, 4.68 to 30.93] and 12.65 [3.33 to 52.75], respectively). Ex vivo analysis showed that autoantibodies against RBCs enhanced erythrophagocytosis and thus significantly impaired macrophage bactericidal function against intracellular Mycobacterium tuberculosis Mechanistically, autoantibody-mediated erythrophagocytosis increased heme oxygenase-1 (HO-1) expression, which inhibited M. tuberculosis-induced autophagy in macrophages. Silencing ATG5, a key component for autophagy, completely abrogated the effect of erythrophagocytosis on macrophage bactericidal activity against M. tuberculosis In conclusion, we have demonstrated that HIV infection increases autoantibody-mediated erythrophagocytosis. This process impairs macrophage bactericidal activity against M. tuberculosis by inhibiting HO-1-associated autophagy. These findings reveal a novel mechanism as to how HIV infection increases TB susceptibility.IMPORTANCE HIV infection significantly increases TB susceptibility due to CD4 T-cell loss and macrophage dysfunction. Although it is relatively clear that CD4 T-cell loss represents a direct effect of HIV infection, the mechanism underlying how HIV infection dampens macrophage function is unknown. Here, we show that HIV infection enhances autoantibody-mediated erythrophagocytosis, which dampens macrophage bactericidal activity against TB by inhibiting HO-1-associated autophagy. Our findings reveal a novel mechanism explaining how HIV infection increases susceptibility to TB. We propose that DAT could be a potential measure to identify HIV patients who are at high TB risk and who would be suitable for anti-TB chemotherapy preventive treatment.


The Combination of piR-823 and Eukaryotic Initiation Factor 3 B (EIF3B) Activates Hepatic Stellate Cells via Upregulating TGF-β1 in Liver Fibrogenesis.

  • Xuechan Tang‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2018‎

BACKGROUND Piwi-interacting RNA (piRNA) is the largest class of small non-coding RNA, which has also been identified in somatic tissues, and aberrant expression of piRNAs in tumor tissues may be implicated in carcinogenesis. piR-823 is increased in liver cirrhosis and hepatocellular carcinoma (HCC). However, there is no report on the function of piR-823 in hepatic stellate cells (HSCs) activation during hepatic fibrosis. The present study investigated the role of piR-823 in HSC activation. MATERIAL AND METHODS Liver fibrosis was induced in mice by carbon tetrachloride (CCL4) injection and bile duct ligation (BDL). The primary HSCs were isolated from mice and cultured. The expression of piR-823 was measured by real-time PCR. The effect of piR-823 on HSCs was evaluated by either sense sequence or antisense sequence of piR-823 carried by liposome. Proteins binding to piR-823 were assayed by RNA pull-down technique and liquid chromatography-mass spectrometry (LC-MS). RESULTS Our data for the first time show that piR-823 is significantly upregulated in activated HSCs. Overexpression of piR-823 promoted HSC proliferation, α-SMA and COL1a1 production, whereas inhibition of piR-823 suppressed the activity of HSCs. Interestingly, the combination of piR-823 and EIF3B promoted TGF-β1 expression. CONCLUSIONS Our data illustrate a novel mechanism of piR-823 in HSC activities. The combination of piR-823 and EIF3B increased TGF-β1 expression, which activates HSCs in liver fibrosis. piR-823 may be a new target in the treatment of liver fibrosis.


Inhibition of the PI3K/AKT signaling pathway sensitizes diffuse large B-cell lymphoma cells to treatment with proteasome inhibitors via suppression of BAG3.

  • Ting Yuan‎ et al.
  • Oncology letters‎
  • 2019‎

Proteasome inhibitors represent a novel class of drugs that have clinical efficacy against hematological and solid cancer types, including acute myeloid leukaemia, myelodysplastic syndrome an non-small cell lung cancer. It has been demonstrated that the anti-apoptotic protein B-cell lymphoma-2-associated athanogene 3 (BAG3) is induced by proteasome inhibitors in various cancer cells and serves an important role in chemotherapy resistance. The phosphatidylinositol 3-kinase (PI3K)/RAC-α serine/threonine-protein kinase (AKT) pathway is constitutively activated in a number of lymphoid malignancy types, including diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma. In the present study, the aim was to elucidate the role of the PI3K/AKT signaling pathway in the induction of BAG3, following exposure to a proteasome inhibitor in DLBCL cell lines. Bortezomib and MG132 were used as proteasome inhibitors. Western blotting was used to evaluate the roles of proteasome inhibitors and the PI3K/AKT pathway in BAG3 induction in DLBCL cells (LY1 and LY8), and LY294002 was used to block the PI3K/AKT pathway. Cell viability was detected using a Cell Counting Kit-8 assay. Apoptosis of LY1 and LY8 cells was quantified by Annexin V/7-amino-actinomycin D flow cytometry. The BAG3 protein was markedly induced upon exposure to bortezomib and MG132 in a dose-dependent manner. The PI3K/AKT inhibitor LY294002 significantly suppressed the induction of BAG3 by proteasome inhibitors. Inhibition of the PI3K/AKT pathway decreased the proliferation and increased the apoptosis induced by proteasome inhibitors. The present results indicated that the PI3K/AKT pathway is associated with the activation of BAG3 expression in DLBCL cells, and is involved in the protective response against proteasome inhibition.


Synthesis, activity evaluation, and pro-apoptotic properties of novel 1,2,4-triazol-3-amine derivatives as potent anti-lung cancer agents.

  • Xian-Yu Sun‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2019‎

In this study, a series of 4,5-bis(substituted phenyl)-4H-1,2,4-triazol-3-amine compounds was designed, synthesised, and evaluated to determine their potential as anti-lung cancer agents. According to the results of screening of lung cancer cell lines A549, NCI-H460, and NCI-H23 in vitro, most of the synthesised compounds have potent cytotoxic activities with IC50 values ranging from 1.02 to 48.01 µM. Particularly, compound 4,5-bis(4-chlorophenyl)-4H-1,2,4-triazol-3-amine (BCTA) was the most potent anti-cancer agent, with IC50 values of 1.09, 2.01, and 3.28 µM against A549, NCI-H460, and NCI-H23 cells, respectively, meaning many-fold stronger anti-lung cancer activity than that of the chemotherapeutic agent 5-fluorouracil. We also explored the effects of BCTA on apoptosis in lung cancer cells by flow cytometry and western blotting. Our results indicated that BCTA induced apoptosis by upregulating proteins BAX, caspase 3, and PARP. Thus, the potential application of compound BCTA as a drug should be further examined.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: