Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 55 papers

MiR-103 controls milk fat accumulation in goat (Capra hircus) mammary gland during lactation.

  • Xianzi Lin‎ et al.
  • PloS one‎
  • 2013‎

Milk is the primary source of nutrition for young mammals including humans. The nutritional value of milk is mainly attributable to fats and proteins fractions. In comparison to cow milk, goat milk contains greater amounts of total fat, including much higher levels of the beneficial unsaturated fatty acids. MicroRNAs (miRNAs), a well-defined group of small RNAs containing about 22 nucleotides (nt), participate in various metabolic processes across species. However, little is known regarding the role of miRNAs in regulating goat milk composition. In the present study, we performed high-throughput sequencing to identify mammary gland-enriched miRNAs in lactating goats. We identified 30 highly expressed miRNAs in the mammary gland, including miR-103. Further studies revealed that miR-103 expression correlates with the lactation. Further functional analysis showed that over-expression of miR-103 in mammary gland epithelial cells increases transcription of genes associated with milk fat synthesis, resulting in an up-regulation of fat droplet formation, triglyceride accumulation, and the proportion of unsaturated fatty acids. This study provides new insight into the functions of miR-103, as well as the molecular mechanisms that regulate milk fat synthesis.


Lactobacillus casei Zhang Counteracts Blood-Milk Barrier Disruption and Moderates the Inflammatory Response in Escherichia coli-Induced Mastitis.

  • Yuhui Zheng‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Escherichia coli is a common mastitis-causing pathogen that can disrupt the blood-milk barrier of mammals. Although Lactobacillus casei Zhang (LCZ) can alleviate mice mastitis, whether it has a prophylactic effect on E. coli-induced mastitis through intramammary infusion, as well as its underlying mechanism, remains unclear. In this study, E. coli-induced injury models of bovine mammary epithelial cells (BMECs) and mice in lactation were used to fill this research gap. In vitro tests of BMECs revealed that LCZ significantly inhibited the E. coli adhesion (p < 0.01); reduced the cell desmosome damage; increased the expression of the tight junction proteins claudin-1, claudin-4, occludin, and zonula occludens-1 (ZO-1; p < 0.01); and decreased the expression of the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 (p < 0.01), thereby increasing trans-epithelial electric resistance (p < 0.01) and attenuating the lactate dehydrogenase release induced by E. coli (p < 0.01). In vivo tests indicated that LCZ significantly reduced the injury and histological score of mice mammary tissues in E. coli-induced mastitis (p < 0.01) by significantly promoting the expression of the tight junction proteins claudin-3, occludin, and ZO-1 (p < 0.01), which ameliorated blood-milk barrier disruption, and decreasing the expression of the inflammatory cytokines (TNF-α, IL-1β, and IL-6) in mice mammary tissue (p < 0.01). Our study suggested that LCZ counteracted the disrupted blood-milk barrier and moderated the inflammatory response in E. coli-induced injury models, indicating that LCZ can ameliorate the injury of mammary tissue in mastitis.


Repeated inoculation with rumen fluid accelerates the rumen bacterial transition with no benefit on production performance in postpartum Holstein dairy cows.

  • Fanlin Kong‎ et al.
  • Journal of animal science and biotechnology‎
  • 2024‎

The dairy cow's postpartum period is characterized by dramatic physiological changes, therefore imposing severe challenges on the animal for maintaining health and milk output. The dynamics of the ruminal microbiota are also tremendous and may play a crucial role in lactation launch. We aim to investigate the potential benefits of early microbial intervention by fresh rumen microbiota transplantation (RMT) and sterile RMT in postpartum dairy cows. Twelve fistulated peak-lactation dairy cows were selected to be the donors for rumen fluid collection. Thirty postpartum cows were divided into 3 groups as the transplantation receptors respectively receiving 10 L fresh rumen fluid (FR), 10 L sterile rumen fluid (SR), or 10 L saline (CON) during 3 d after calving.


The Effect of Aquaporin-4 Knockout on Interstitial Fluid Flow and the Structure of the Extracellular Space in the Deep Brain.

  • Ze Teng‎ et al.
  • Aging and disease‎
  • 2018‎

It has been reported that aquaporin-4 (AQP4) deficiency impairs transportation between the cerebrospinal fluid and interstitial fluid (ISF) as well as the clearance of interstitial solutes in the superficial brain. However, the effect of AQP4 on ISF flow in the deep brain remains unclear. This study compared the brain ISF flow in the caudate nucleus and thalamus of normal rats (NO) and AQP4 knockout rats (KO) using tracer-based magnetic resonance imaging. The rate of brain ISF flow slowed to different degrees in the two regions of KO rats' brains. Compared with NO rats, the half-life of ISF in the thalamus of KO rats was significantly prolonged, with a corresponding decrease in the clearance coefficient. The tortuosity of the brain extracellular space (ECS) was unchanged in the thalamus of KO rats. In the caudate nucleus of KO rats, the volume fraction of the ECS and the diffusion coefficient were increased, with significantly decreased tortuosity; no significant changes in brain ISF flow were demonstrated. Combined with a change in the expression of glial fibrillary acidic protein and AQP4 in two brain regions, we found that the effect of AQP4 knockout on ISF flow and ECS structure in these two regions differed. This difference may be related to the distribution of astrocytes and the extent of AQP4 decline. This study provides evidence for the involvement of AQP4 in ISF transportation in the deep brain and provides a basis for the establishment of a pharmacokinetic model of the brain's interstitial pathway.


Selective adipogenic differentiation of human periodontal ligament stem cells stimulated with high doses of glucose.

  • Chao Deng‎ et al.
  • PloS one‎
  • 2018‎

Periodontal tissue damage, accompanied by the degradation and destruction of periodontal tissue collagen, is one of the most clinically common complications and difficulty self-repair in patients with diabetes. Human periodontal ligament stem cells (PDLSC) are the undifferentiated mesenchymal cells that persist in the periodontal ligament after development of periodontal tissue and the ability of PDLSC osteogenic differentiation is responsible for repairing periodontal tissue defects. However, the reasons of high glucose environment in diabetic patients inhibiting PDLSC to repair periodontal tissues are unclear. To address these issues, we propose exposing PDLSC to high-sugar mimics the diabetic environment and investigating the activity of osteogenic differentiation and adipogenic differentiation of PDLSC. At the cellular level, high glucose can promote the adipogenic differentiation and inhibit osteogenic differentiation to decrease the self-repair ability of PDLSC in periodontal tissues. Mechanistically at the molecular level, these effects are elicited via regulating the mRNA and protein expression of C/EBPβ, PPAR-γ.


Cloning, Expression and Characterization of a Novel Cold-adapted β-galactosidase from the Deep-sea Bacterium Alteromonas sp. ML52.

  • Jingjing Sun‎ et al.
  • Marine drugs‎
  • 2018‎

The bacterium Alteromonas sp. ML52, isolated from deep-sea water, was found to synthesize an intracellular cold-adapted β-galactosidase. A novel β-galactosidase gene from strain ML52, encoding 1058 amino acids residues, was cloned and expressed in Escherichia coli. The enzyme belongs to glycoside hydrolase family 2 and is active as a homotetrameric protein. The recombinant enzyme had maximum activity at 35 °C and pH 8 with a low thermal stability over 30 °C. The enzyme also exhibited a Km of 0.14 mM, a Vmax of 464.7 U/mg and a kcat of 3688.1 S-1 at 35 °C with 2-nitrophenyl-β-d-galactopyranoside as a substrate. Hydrolysis of lactose assay, performed using milk, indicated that over 90% lactose in milk was hydrolyzed after incubation for 5 h at 25 °C or 24 h at 4 °C and 10 °C, respectively. These properties suggest that recombinant Alteromonas sp. ML52 β-galactosidase is a potential biocatalyst for the lactose-reduced dairy industry.


HMGB1 mediates lipopolysaccharide-induced macrophage autophagy and pyroptosis.

  • Jiawei Shang‎ et al.
  • BMC molecular and cell biology‎
  • 2023‎

Autophagy and pyroptosis of macrophages play important protective or detrimental roles in sepsis. However, the underlying mechanisms remain unclear. High mobility group box protein 1 (HMGB1) is associated with both pyroptosis and autophagy. lipopolysaccharide (LPS) is an important pathogenic factor involved in sepsis. Lentivirus-mediated HMGB1 shRNA was used to inhibit the expression of HMGB1. Macrophages were treated with acetylation inhibitor (AA) to suppress the translocation of HMGB1 from the nucleus to the cytosol. Autophagy and pyroptosis-related protein expressions were detected by Western blot. The levels of caspase-1 activity were detected and the rate of pyroptotic cells was detected by flow cytometry. LPS induced autophagy and pyroptosis of macrophages at different stages, and HMGB1 downregulation decreased LPS-induced autophagy and pyroptosis. Treatment with acetylation inhibitor (anacardic acid) significantly suppressed LPS-induced autophagy, an effect that was not reversed by exogenous HMGB1, suggesting that cytoplasmic HMGB1 mediates LPS-induced autophagy of macrophages. Anacardic acid or an anti-HMGB1 antibody inhibited LPS-induced pyroptosis of macrophages. HMGB1 alone induced pyroptosis of macrophages and this effect was inhibited by anti-HMGB1 antibody, suggesting that extracellular HMGB1 induces macrophage pyroptosis and mediates LPS-induced pyroptosis. In summary, HMGB1 plays different roles in mediating LPS-induced autophagy and triggering pyroptosis according to subcellular localization.


LncRNA NEAT1 promotes endometrial cancer cell proliferation, migration and invasion by regulating the miR-144-3p/EZH2 axis.

  • Wei Wang‎ et al.
  • Radiology and oncology‎
  • 2019‎

Background Endometrial cancer (EC) is one of the most common gynaecological tumours in the worldwide. Long non-coding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1) promotes cell proliferation, migration and invasion in EC cells. However, the molecular mechanisms of NEAT1 in EC have not been fully clarified. We conducted this study to reveal the function of NEAT1 in EC tissues and cell lines. Materials and methods Cancer and adjacent tissues were collected from EC patients. HEC-1A and Ishikawa cells were cultured in vitro. NEAT1 expression was downregulated by transfecting small hairpin RNA (shRNA) and miR-144-3p was overexpressed by transfecting miR-144-3p mimics. Cell proliferation was detected by MTT assay and colony formation assay. Cell migration and invasion abilities were assessed by transwell assay. A dual-luciferase reporter assay was used to verify the relationship among NEAT1, EZH2, and miR-144-3p. The expression level of EZH2 was measured by Western blot and qPCR. Results NEAT1 was highly expressed in EC tissues and cells. Knockdown of NEAT1 inhibited the proliferation, migration and invasion of EC cells. Additionally, NEAT1 acted as a ceRNA of miR-144-3p, leading to EZH2 upregulation. Overexpression of miR-144-3p suppressed the proliferation and invasion of EC cells. Conclusions NEAT1 promotes EC cells proliferation and invasion by regulating the miR-144-3p/EZH2 axis.


Changes of the glutathione redox system during the weaning transition in piglets, in relation to small intestinal morphology and barrier function.

  • Jeroen Degroote‎ et al.
  • Journal of animal science and biotechnology‎
  • 2020‎

Weaning is known to result in barrier dysfunction and villus atrophy in the immediate post-weaning phase, and the magnitude of these responses is hypothesized to correlate with changes in the glutathione (GSH) redox system. Therefore, these parameters were simultaneously measured throughout the weaning phase, in piglets differing in birth weight category and weaning age, as these pre-weaning factors are important determinants for the weaning transition. Low birth weight (LBW) and normal birth weight (NBW) littermates were assigned to one of three weaning treatments; i.e. weaning at 3 weeks of age (3w), weaning at 4 weeks of age (4w) and removal from the sow at 3 d of age and fed a milk replacer until weaning at 3 weeks of age (3d3w). For each of these treatments, six LBW and six NBW piglets were euthanized at 0, 2, 5, 12 or 28 d post-weaning piglets, adding up 180 piglets.


Minocycline Attenuates Stress-Induced Behavioral Changes via Its Anti-inflammatory Effects in an Animal Model of Post-traumatic Stress Disorder.

  • Wei Wang‎ et al.
  • Frontiers in psychiatry‎
  • 2018‎

Accumulating evidences have suggested that anxiety-like behavior and impairment of learning and memory are key symptoms of post-traumatic stress disorder (PTSD), and pharmacological treatment can ameliorate anxiety and cognitive impairments. Recent studies have shown that minocycline exhibits anxiolytic effects. The aims of the present study were to determine whether minocycline administration would alter anxiety-like behavior and cognitive deficits induced by inescapable foot shock (IFS) and to explore the underlying mechanisms. Male Wistar rats were exposed to the IFS protocol for a period of 6 days to induce PTSD. The PTSD-like behavior was tested using the open field test, elevated plus maze test, and Morris water maze test. The effects of minocycline on pro-inflammatory cytokines, activation of microglia, and NF-κB in the PFC and hippocampus were also examined. Treatment with minocycline significantly reversed the IFS induced behavioral and cognitive parameters (impaired learning and memory function) in stressed rats. Additionally, IFS was able to increase pro-inflammatory cytokines, activate microglia, and enhance NF-κB levels, while minocycline significantly reversed these alterations. Taken together, our results suggest that the anxiolytic effect of minocycline is related to its ability to decrease the levels of pro-inflammatory cytokines and inhibit activation of microglia and NF-κB in the PFC and hippocampus.


Upregulation of bone morphogenetic protein 2 ( Bmp2) in dorsal root ganglion in a rat model of bone cancer pain.

  • Wei Wang‎ et al.
  • Molecular pain‎
  • 2019‎

Bone cancer pain is one of the most severe and intractable complications in patients suffering from primary or metastatic bone cancer and profoundly compromises the quality of life. Emerging evidence indicates that the dorsal root ganglion play an integral role in the modulation of pain hypersensitivity. However, the underlying molecular mechanisms during dorsal root ganglion-mediated bone cancer pain remain elusive. In this study, RNA-sequencing was used to detect the differentially expressed genes in dorsal root ganglion neurons of a rat bone cancer pain model established by intratibial inoculation of Walker 256 breast cancer cells. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis showed that the differentially expressed genes (fold change > 1.5; false discovery rate < 0.05) were enriched in the bone morphogenetic protein (BMP) signaling pathway, transforming growth factor-β signaling pathway, and positive regulation of cartilage development. Importantly, serum deprivation-response protein ( Sdpr), hephaestin ( Heph), transthyretin ( Ttr), insulin receptor substrate 1 ( Irs1), connective tissue growth factor ( Ctgf ), and Bmp2 genes were associated with bone pain and degeneration. Of note, Bmp2, a pleiotropic and secreted molecule mediating pain and inflammation, was one of the most significantly upregulated genes in dorsal root ganglion neurons in this bone cancer pain model. Consistent with these data, upregulation of Bmp2 in the bone cancer pain model was validated by immunohistochemistry, real-time quantitative polymerase chain reaction, and western blotting. Importantly, intrathecal administration of siRNA significantly reduced Bmp2 transcription and ameliorated bone cancer pain in rat as shown by paw withdrawal mechanical threshold and spontaneous and movement-evoked pain-like behaviors. In conclusion, we have characterized the comprehensive gene expression profile of dorsal root ganglion from a bone cancer pain rat model by RNA-sequencing and identified Bmp2 as a potential therapeutic target for bone cancer pain treatment.


Astragaloside IV alleviates silica‑induced pulmonary fibrosis via inactivation of the TGF‑β1/Smad2/3 signaling pathway.

  • Nannan Li‎ et al.
  • International journal of molecular medicine‎
  • 2021‎

The aim of the present study was to investigate the anti‑fibrotic effects of astragaloside IV (ASV) in silicosis rats, and to further explore the potential underlying molecular mechanisms. A silica‑induced rat model of pulmonary fibrosis was successfully constructed. Hematoxylin and eosin and Masson's trichrome staining were performed to observe the pathological changes in lung tissues. Immunohistochemical analysis was used to assess the expression levels of Collagen I, fibronectin and α‑smooth muscle actin (α‑SMA). A hemocytometer and Giemsa staining were used to evaluate the cytological characteristics of the bronchoalveolar lavage fluid. ELISA was used to detect the levels of the inflammatory cytokines tumor necrosis factor‑α, interleukin (IL)‑1β and IL‑6. Reverse transcription‑quantitative PCR and western blotting were performed to detect the mRNA and protein expression levels of genes associated with the transforming growth factor (TGF)‑β1/Smad signaling pathway. ASV alleviated silica‑induced pulmonary fibrosis, and reduced the expression of collagen I, fibronectin and α‑SMA. In addition, the results of the present study suggested that the ASV‑mediated anti‑pulmonary fibrosis response may involve reduction of inflammation and oxidative stress. More importantly, ASV suppressed silica‑induced lung fibroblast fibrosis via the TGF‑β1/Smad signaling pathway, thereby inhibiting the progression of silicosis. In conclusion, the present study indicated that ASV may prevent silicosis‑induced fibrosis by reducing the expression of Collagen I, fibronectin and α‑SMA, and reducing the inflammatory response and oxidative stress, and these effects may be mediated by inhibiting the activation of the TGF‑β1/Smad signaling pathway.


The zinc finger protein Zfr1p is localized specifically to conjugation junction and required for sexual development in Tetrahymena thermophila.

  • Jing Xu‎ et al.
  • PloS one‎
  • 2012‎

Conjugation in Tetrahymena thermophila involves a developmental program consisting of three prezygotic nuclear divisions, pronuclear exchange and fusion, and postzygotic and exconjugant stages. The conjugation junction structure appears during the initiation of conjugation development, and disappears during the exconjugant stage. Many structural and functional proteins are involved in the establishment and maintenance of the junction structure in T. thermophila. In the present study, a zinc finger protein-encoding gene ZFR1 was found to be expressed specifically during conjugation and to localize specifically to the conjugation junction region. Truncated Zfr1p localized at the plasma membrane in ordered arrays and decorated Golgi apparatus located adjacent to basal body. The N-terminal zinc finger and C-terminal hydrophobic domains of Zfr1p were found to be required for its specific conjugation junction localization. Conjugation development of ZFR1 somatic knockout cells was aborted at the pronuclear exchange and fusion conjugation stages. Furthermore, Zfr1p was found to be important for conjugation junction stability during the prezygotic nuclear division stage. Taken together, our data reveal that Zfr1p is required for the stability and integrity of the conjugation junction structure and essential for the sexual life cycle of the Tetrahymena cell.


Downregulation of the CB1-Mediated Endocannabinoid Signaling Underlies D-Galactose-Induced Memory Impairment.

  • Ranran Li‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2020‎

Imbalance in redox homeostasis is a major cause of age-related cognitive impairment. The endocannabinoid system (ECS) is a key player in regulating synaptic transmission, plasticity and memory. Increasing evidence indicates an important interplay between the two systems. However, how excessive oxidative stress could alter ECS and that, in turn, impairs its modulatory role in synaptic plasticity and cognitive function remains elusive. In the present study, we examined this causal link in D-galactose-induced oxidative rats. First, the reactive oxygen species generating enzymes, especially nitric oxide synthase (NOS), indeed show an elevated expression in D-galactose-treated rats, and this was correlated to an impaired hippocampal long-term potentiation (LTP) and spatial memory loss in animal behavioral tests. Second, the cannabinoid receptor type I (CB1)-mediated signaling is known to regulate synaptic plasticity. We show that a decrease in CB1 and increase in degradation enzymes for CB1 ligand endocannabinoid anandamide all occurred to D-galactose-treated rats. Surprisingly, application of low-dose anandamide, known to reduce LTP under physiological condition, now acted to enhance LTP in D-galactose-treated rats, most likely resulted from the inhibition of GABAergic synapses. Furthermore, this reversal behavior of CB1-signaling could be fully simulated by a NOS inhibitor, diphenyleneiodonium. These observations suggest that interaction between redox dysfunction and ECS should contribute significantly to the impaired synaptic plasticity and memory loss in D-galactose-treated rats. Therefore, therapies focusing on the balance of these two systems may shed lights on the treatment of age-related cognitive impairment in the future.


Danqi Pill Protects Against Heart Failure Post-Acute Myocardial Infarction via HIF-1α/PGC-1α Mediated Glucose Metabolism Pathway.

  • Qian Zhang‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Heart failure (HF) post-acute myocardial infarction (AMI) leads to a large number of hospitalizations and deaths worldwide. Danqi pill (DQP) is included in the 2015 national pharmacopoeia and widely applied in the treatment of HF in clinics in China. We examined whether DQP acted on glucose metabolism to protect against HF post-AMI via hypoxia inducible factor-1 alpha (HIF-1α)/peroxisome proliferator-activated receptor α co-activator (PGC-1α) pathway.


Correlation of DNA methylation of DNMT3A and TET2 with oral squamous cell carcinoma.

  • Xueming Li‎ et al.
  • Discover. Oncology‎
  • 2024‎

Oral squamous cell carcinoma (OSCC) is the sixth most common malignancy worldwide. Abnormal epigenetic modifications, including DNA methylation, are hallmarks of cancer and implicated in the development of various tumors. DNA methylation is catalyzed by the DNA methyltransferase and ten-eleven translocation dioxygenase families, with DNMT3A and TET2 being the most widely studied members, respectively. The correlation of methylation β values and clinical features was conducted in patients with OSCC in The Cancer Genome Atlas database. DNA methylation and protein expression levels of DNMT3A and TET2 in tissues were analyzed with methylation-specific polymerase chain reaction (MSP) and western blotting. To evaluate the effects of DNMT3A and TET2 on the biological characteristics of OSCC, cell proliferation was assessed with 5-ethynyl-2'-deoxyuridine, and cell migration capacity was quantified with wound healing and transwell assays. A survival analysis was performed with the Kaplan-Meier approach. The correlation between different methylation β values and clinical features was revealed. MSP revealed varying methylation degrees of DNMT3A and TET2 in OSCC tissues. Furthermore, western blotting showed that the protein expression levels were significantly different in cancer and surrounding healthy tissue samples. In vitro experiments demonstrated that DNMT3A knockdown and TET2 overexpression could inhibit the proliferation and migration of OSCC. Survival analysis revealed that patients with high DNMT3A methylation levels showed higher survival rates.


Biomarker and Drug Target Discovery Using Quantitative Proteomics Post-Intracerebral Hemorrhage Stroke in the Rat Brain.

  • Shuixiang Deng‎ et al.
  • Journal of molecular neuroscience : MN‎
  • 2018‎

The pathological mechanisms of acute intracerebral hemorrhage (ICH) remain unknown and unverified. In the present study, we used quantitative proteomics to elucidate the pathological mechanisms and to identify novel biomarker and therapeutic target candidates via tissue proteome in a rat model of acute ICH. Rats were experimentally induced with ICH (n = 6) or Sham (n = 6), and their brain tissue was obtained by 24 h. The TMT-LC-MS/MS-based proteomics approach was used to quantify the differential proteomes across brain tissue, and the results were further analyzed by ingenuity pathway analysis to explore canonical pathways and the relationship involved in the uploaded data. Upon quantification, we found that 96 secreted proteins that were identified in the ICH 24-h group were significantly different those in the control group (P < 0.05); among these proteins, 57 increased and 39 decreased in abundance. Bioinformatic analyses of differentially expressed proteins demonstrated that the protein localization and ERK1 and ERK2 cascade were the top two biological processes with the highest concentrations of differentially proteins. The top protein-protein action network with high confidence levels of protein was the albumin and ERK signaling pathways. Albumin, ERK, and p-ERK were assessed in brain tissue by western blot analysis, and higher expression levels of albumin and p-ERK were observed in the ICH group. Our proteomic results highlight important change in the biological processes of ERK1 and ERK2 cascade, which are possible targets for future interventions of ICH. To our knowledge, this study provides in-depth analysis of ICH in brain tissue, and we propose 96 new biomarker candidates for ICH, including albumin and ERK.


CDKL3 Targets ATG5 to Promote Carcinogenesis of Esophageal Squamous Cell Carcinoma.

  • Suna Zhou‎ et al.
  • Frontiers in oncology‎
  • 2020‎

Our previous study suggested cyclin-dependent kinase-like 3 (CDKL3) acts as a new oncogene in esophageal squamous cell carcinoma (ESCC) cell line TE-1. However, the molecular mechanisms and biological effects of CDKL3 in ESCC remain unknown. In the present study, we aimed to explore the clinical significance of CDKL3 in ESCC and how CDKL3 regulates the malignant behavior of ESCC.


Raloxifene improves TNF-α-induced osteogenic differentiation inhibition of bone marrow mesenchymal stem cells and alleviates osteoporosis.

  • Fenghe Yang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2020‎

Effect of raloxifene (RLF) on the improvement of inhibited osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) resulted from tumor necrosis factor-α (TNF-α) induction, thus alleviating the progression of osteoporosis (OP), was investigated. An in vivo OP rat model was constructed by performing the procedures of ovariectomy (OVX). Rats were randomly divided into sham group, OVX group and RLF+OVX group. BMSCs were extracted from healthy rats, and randomly divided into control group, TNF-α group, RLF group and TNF-α+RLF group. Viability and cellular calcification ability in each group were detected. The relative levels of osteocalcin (OCN), Runx2 and NF-κB in cells with different treatments were determined. The body weight of rats in the OVX group and RLF+OVX group gradually increased compared with that in the sham group on the 8th week. No significant difference in body weight was observed between the rats of the OVX group and RLF+OVX group. Bone metabolism index (BMD) in the rats of the RLF+OVX group was higher than that of the OVX group, and lower compared with that of the sham group. Compared with the sham group, the elastic/max radial degree and elastic/max load of femora were reduced in the OVX group and RLF+OVX group, especially in the OVX group. The relative levels of OCN and Runx2, as well as the ALP activity and calcification ability, were decreased in the OVX group compared with the sham group, and the effect was partially reversed by the RLF treatment. After osteogenic differentiation of BMSCs, the viability and calcification ability were markedly reduced in TNF-α group, which was reversed by RLF treatment. Moreover, TNF-α induction downregulated the relative levels of OCN and Runx2, and RLF treatment could enhance their levels. The upregulated NF-κB protein level, induced by TNF-α, was reduced after RLF treatment. TNF-α induction inhibits osteogenic differentiation of BMSCs, which could be remarkably alleviated by RLF. It is suggested that RLF contributes to the alleviation of OP progression.


Preactivation of Notch1 in remote ischemic preconditioning reduces cerebral ischemia-reperfusion injury through crosstalk with the NF-κB pathway.

  • Weidong Liang‎ et al.
  • Journal of neuroinflammation‎
  • 2019‎

Remote ischemic preconditioning (RIPC) initiates endogenous protective pathways in the brain from a distance and represents a new, promising paradigm in neuroprotection against cerebral ischemia-reperfusion (I/R) injury. However, the underlying mechanism of RIPC-mediated cerebral ischemia tolerance is complicated and not well understood. We reported previously that preactivation of Notch1 mediated the neuroprotective effects of cerebral ischemic preconditioning in rats subjected to cerebral I/R injury. The present study seeks to further explore the role of crosstalk between the Notch1 and NF-κB signaling pathways in the process of RIPC-induced neuroprotection.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: