Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Relationship between the Young's Moduli of Whole Microcapsules and Their Shell Material Established by Micromanipulation Measurements Based on Diametric Compression between Two Parallel Surfaces and Numerical Modelling.

  • Daniele Baiocco‎ et al.
  • Micromachines‎
  • 2023‎

Micromanipulation is a powerful technique to measure the mechanical properties of microparticles including microcapsules. For microparticles with a homogenous structure, their apparent Young's modulus can be determined from the force versus displacement data fitted by the classical Hertz model. Microcapsules can consist of a liquid core surrounded by a solid shell. Two Young's modulus values can be defined, i.e., the one is that determined using the Hertz model and another is the intrinsic Young's modulus of the shell material, which can be calculated from finite element analysis (FEA). In this study, the two Young's modulus values of microplastic-free plant-based microcapsules with a core of perfume oil (hexyl salicylate) were calculated using the aforementioned approaches. The apparent Young's modulus value of the whole microcapsules determined by the classical Hertz model was found to be EA = 0.095 ± 0.014 GPa by treating each individual microcapsule as a homogeneous solid spherical particle. The previously obtained simulation results from FEA were utilised to fit the micromanipulation data of individual core-shell microcapsules, enabling to determine their unique shell thickness to radius ratio (h/r)FEA = 0.132 ± 0.009 and the intrinsic Young's modulus of their shell (EFEA = 1.02 ± 0.13 GPa). Moreover, a novel theoretical relationship between the two Young's modulus values has been derived. It is found that the ratio of the two Young's module values (EA/EFEA) is only a function on the ratio of the shell thickness to radius (h/r) of the individual microcapsule, which can be fitted by a third-degree polynomial function of h/r. Such relationship has proven applicable to a broad spectrum of microcapsules (i.e., non-synthetic, synthetic, and double coated shells) regardless of their shell chemistry.


Lego-Inspired Glass Capillary Microfluidic Device: A Technique for Bespoke Microencapsulation of Phase Change Materials.

  • Sumit Parvate‎ et al.
  • ACS applied materials & interfaces‎
  • 2023‎

We report a Lego-inspired glass capillary microfluidic device capable of encapsulating both organic and aqueous phase change materials (PCMs) with high reproducibility and 100% PCM yield. Oil-in-oil-in-water (O/O/W) and water-in-oil-in-water (W/O/W) core-shell double emulsion droplets were formed to encapsulate hexadecane (HD, an organic PCM) and salt hydrate SP21EK (an aqueous PCM) in a UV-curable polymeric shell, Norland Optical Adhesive (NOA). The double emulsions were consolidated through on-the-fly polymerization, which followed thiol-ene click chemistry for photoinitiation. The particle diameters and shell thicknesses of the microcapsules were controlled by manipulating the geometry of glass capillaries and fluid flow rates. The microcapsules were monodispersed and exhibited the highest encapsulation efficiencies of 65.4 and 44.3% for HD and SP21EK-based materials, respectively, as determined using differential scanning calorimetry (DSC). The thermogravimetric (TGA) analysis confirmed much higher thermal stability of both encapsulated PCMs compared to pure PCMs. Polarization microscopy revealed that microcapsules could sustain over 100 melting-crystallization cycles without any structural changes. Bifunctional microcapsules with remarkable photocatalytic activity along with thermal energy storage performance were produced after the addition of 1 wt % titanium dioxide (TiO2) nanoparticles (NPs) into the polymeric shell. The presence of TiO2 NPs in the shell was confirmed by higher opacity and whiteness of these microcapsules and was quantified by energy dispersive X-ray (EDX) spectroscopy. Young's modulus of HD-based microcapsules estimated using micromanipulation analysis increased from 58.5 to 224 MPa after TiO2 incorporation in the shell.


Microplastic-Free Microcapsules to Encapsulate Health-Promoting Limonene Oil.

  • Daniele Baiocco‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Fast-moving consumer goods (FMCG) industry has long included many appealing essential oils in products to meet consumers' needs. Among all, the demand for limonene (LM) has recently surged due to its broad-spectrum health benefits, with applications in cosmetic, detergent, and food products. However, LM is extremely volatile, hence has often been encapsulated for a longer shelf-life. To date, mostly non-biodegradable synthetic polymers have been exploited to fabricate the microcapsule shells, and the resulting microcapsules contribute to the accumulation of microplastic in the environment. So far, information on LM-entrapping microcapsules with a natural microplastic-free shell and their mechanism of formation is limited, and there is lack of an in-depth characterisation of their mechanical and adhesive properties, which are crucial for understanding their potential performance at end-use applications. The present research aims towards developing safe microcapsules with a core of LM fabricated via complex coacervation (CC) using gum Arabic (GA) and fungally sourced chitosan (fCh) as shell precursors. The encapsulation efficiency (EE) for LM was quantified by gas chromatography (GC) separation method. The morphology of microcapsules was investigated via bright-field optical microscopy and scanning electron microscopy, and their mechanical properties were characterised using a micromanipulation technique. Moreover, the adhesive properties of the resulting microcapsules were studied via a bespoke microfluidic device fitted with a polyethylene-terephthalate (PET) substrate and operating at increasingly hydrodynamic shear stress (HSS). Spherical core-shell microcapsules (EE ~45%) with a mean size of 38 ± 2 μm and a relatively smooth surface were obtained. Their mean rupture force and nominal rupture stress were 0.9 ± 0.1 mN and 2.1 ± 0.2 MPa, respectively, which are comparable to those of other microcapsules with synthetic shells, e.g., urea- and melamine-formaldehyde. It was also found that the fCh-GA complexed shell provided promising adhesive properties onto PET films, leading to a microcapsule retention of ~85% and ~60% at low (≤50 mPa) and high shear stress (0.9 Pa), respectively. Interestingly, these values are similar to the adhesion data available in literature for microplastic-based microcapsules, such as melamine-formaldehyde (50-90%). Overall, these findings suggest that microplastics-free microcapsules with a core of oil have been successfully fabricated, and can offer a potential for more sustainable, consumer- and environmentally friendly applications in FMCGs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: