2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Endonucleolytic processing plays a critical role in the maturation of ribosomal RNA in Methanococcus maripaludis.

  • Lei Qi‎ et al.
  • RNA biology‎
  • 2023‎

Ribosomal RNA (rRNA) processing and maturation are fundamentally important for ribosome biogenesis, but the mechanisms in archaea, the third form of life, remains largely elusive. This study aimed to investigate the rRNA maturation process in Methanococcus maripaludis, a representative archaeon lacking known 3'-5' exonucleases. Through cleavage site identification and enzymatic assays, the splicing endonuclease EndA was determined to process the bulge-helix-bulge (BHB) motifs in 16S and 23S rRNA precursors. After splicing, the circular processing intermediates were formed and this was confirmed by quantitative RT-PCR and Northern blot. Ribonuclease assay revealed a specific cleavage at a 10-nt A/U-rich motif at the mature 5' end of pre-16S rRNA, which linearized circular pre-16S rRNA intermediate. Further 3'-RACE and ribonuclease assays determined that the endonuclease Nob1 cleaved the 3' extension of pre-16S rRNA, and so generated the mature 3' end. Circularized RT-PCR (cRT-PCR) and 5'-RACE identified two cleavage sites near helix 1 at the 5' end of 23S rRNA, indicating that an RNA structure-based endonucleolytic processing linearized the circular pre-23S rRNA intermediate. In the maturation of pre-5S rRNA, multiple endonucleolytic processing sites were determined at the 10-nt A/U-rich motif in the leader and trailer sequence. This study demonstrates that endonucleolytic processing, particularly at the 10-nt A/U-rich motifs play an essential role in the pre-rRNA maturation of M. maripaludis, indicating diverse pathways of rRNA maturation in archaeal species.


The archaeal RNA chaperone TRAM0076 shapes the transcriptome and optimizes the growth of Methanococcus maripaludis.

  • Jie Li‎ et al.
  • PLoS genetics‎
  • 2019‎

TRAM is a conserved domain among RNA modification proteins that are widely distributed in various organisms. In Archaea, TRAM occurs frequently as a standalone protein with in vitro RNA chaperone activity; however, its biological significance and functional mechanism remain unknown. This work demonstrated that TRAM0076 is an abundant standalone TRAM protein in the genetically tractable methanoarcheaon Methanococcus maripaludis. Deletion of MMP0076, the gene encoding TRAM0076, markedly reduced the growth and altered transcription of 55% of the genome. Substitution mutations of Phe39, Phe42, Phe63, Phe65 and Arg35 in the recombinant TRAM0076 decreased the in vitro duplex RNA unfolding activity. These mutations also prevented complementation of the growth defect of the MMP0076 deletion mutant, indicating that the duplex RNA unfolding activity was essential for its physiological function. A genome-wide mapping of transcription start sites identified many 5' untranslated regions (5'UTRs) of 20-60 nt which could be potential targets of a RNA chaperone. TRAM0076 unfolded three representative 5'UTR structures in vitro and facilitated the in vivo expression of a mCherry reporter system fused to the 5'UTRs, thus behaving like a transcription anti-terminator. Flag-tagged-TRAM0076 co-immunoprecipitated a large number of cellular RNAs, suggesting that TRAM0076 plays multiple roles in addition to unfolding incorrect RNA structures. This work demonstrates that the conserved archaeal RNA chaperone TRAM globally affects gene expression and may represent a transcriptional element in ancient life of the RNA world.


The conserved ribonuclease aCPSF1 triggers genome-wide transcription termination of Archaea via a 3'-end cleavage mode.

  • Lei Yue‎ et al.
  • Nucleic acids research‎
  • 2020‎

Transcription termination defines accurate transcript 3'-ends and ensures programmed transcriptomes, making it critical to life. However, transcription termination mechanisms remain largely unknown in Archaea. Here, we reported the physiological significance of the newly identified general transcription termination factor of Archaea, the ribonuclease aCPSF1, and elucidated its 3'-end cleavage triggered termination mechanism. The depletion of Mmp-aCPSF1 in Methanococcus maripaludis caused a genome-wide transcription termination defect and disordered transcriptome. Transcript-3'end-sequencing revealed that transcriptions primarily terminate downstream of a uridine-rich motif where Mmp-aCPSF1 performed an endoribonucleolytic cleavage, and the endoribonuclease activity was determined to be essential to the in vivo transcription termination. Co-immunoprecipitation and chromatin-immunoprecipitation detected interactions of Mmp-aCPSF1 with RNA polymerase and chromosome. Phylogenetic analysis revealed that the aCPSF1 orthologs are ubiquitously distributed among the archaeal phyla, and two aCPSF1 orthologs from Lokiarchaeota and Thaumarchaeota could replace Mmp-aCPSF1 to terminate transcription of M. maripaludis. Therefore, the aCPSF1 dependent termination mechanism could be widely employed in Archaea, including Lokiarchaeota belonging to Asgard Archaea, the postulated archaeal ancestor of Eukaryotes. Strikingly, aCPSF1-dependent archaeal transcription termination reported here exposes a similar 3'-cleavage mode as the eukaryotic RNA polymerase II termination, thus would shed lights on understanding the evolutionary linking between archaeal and eukaryotic termination machineries.


Internal transcription termination widely regulates differential expression of operon-organized genes including ribosomal protein and RNA polymerase genes in an archaeon.

  • Wenting Zhang‎ et al.
  • Nucleic acids research‎
  • 2023‎

Genes organized within operons in prokaryotes benefit from coordinated expression. However, within many operons, genes are expressed at different levels, and the mechanisms for this remain obscure. By integrating PacBio-seq, dRNA-seq, Term-seq and Illumina-seq data of a representative archaeon Methanococcus maripaludis, internal transcription termination sites (ioTTSs) were identified within 38% of operons. Higher transcript and protein abundances were found for genes upstream than downstream of ioTTSs. For representative operons, these differences were confirmed by northern blotting, qRT-PCR and western blotting, demonstrating that these ioTTS terminations were functional. Of special interest, mutation of ioTTSs in ribosomal protein (RP)-RNA polymerase (RNAP) operons not only elevated expression of the downstream RNAP genes but also decreased production of the assembled RNAP complex, slowed whole cell transcription and translation, and inhibited growth. Overexpression of the RNAP subunits with a shuttle vector generated the similar physiological effects. Therefore, ioTTS termination is a general and physiologically significant regulatory mechanism of the operon gene expression. Because the RP-RNAP operons are found to be widely distributed in archaeal species, this regulatory mechanism could be commonly employed in archaea.


CRISPR-Cas9 Toolkit for Genome Editing in an Autotrophic CO2-Fixing Methanogenic Archaeon.

  • Jie Li‎ et al.
  • Microbiology spectrum‎
  • 2022‎

The CRISPR-Cas9 system is a robust genome editing tool that is widely applied in eukaryotes and bacteria. However, use of this technique has only been developed for one species of Archaea, a domain of life ranking in parallel with Eukarya and Bacteria. In this study, we applied the CRISPR-Cas9 genome editing technique to Methanococcus maripaludis, an autotrophic and hydrogenotrophic methanogenic archaeon with a remarkably polyploid genome comprising up to ~55 chromosomal copies per cell. An editing plasmid was designed that encodes small guide RNA (sgRNA), Cas9 protein and an ~1-kb repair template (donor). Highly efficient (75% to 100%) and precise genome editing was achieved following one-step transformation. Significantly, the Cas9-based system efficiently deleted one or two genes and a large DNA fragment (~9 kb) and even synchronously deleted 13 genes located at three loci in all chromosomal copies of M. maripaludis. Moreover, precise in situ genome modifications, such as gene tagging and multiple- and even single-nucleotide mutagenesis, were also introduced with high efficiency. Further, as a proof of concept, precise mutagenesis at the nucleotide level allowed the engineering of both transcriptional and translational activities. Mutations were introduced into an archaeal promoter BRE (transcription factor B [TFB] recognition element), a terminator U-tract region, and a gene coding region. Stop codon introduction into a gene through single-nucleotide substitution shut down its expression, providing an alternative strategy for gene inactivation. In conclusion, the robust CRISPR-Cas9 genetic toolkit developed in this investigation greatly facilitates the application of M. maripaludis as a model system in the study of archaeal biology and biotechnology development, particularly CO2-based biotechnologies. IMPORTANCE Archaea are prokaryotes with intriguing biological characteristics. They possess bacterial cell structures but eukaryotic homologous information processing machinery and eukaryotic featured proteins. Archaea also display excellent adaptability to extreme environments and play pivotal roles in ecological processes, thus exhibiting valuable biotechnological potential. However, the in-depth understanding and practical application of archaea are much lagging, because only a minority of pure cultures are available, and even worse, very few can be genetically manipulated. This work developed CRISPR-Cas9-based genome editing technology in Methanococcus maripaludis, a CO2-fixing methanogenic archaeon. The CRISPR-Cas9 approach developed in this study provides an elegant and efficient genome editing toolkit that can be applied in the knockout of single or multiple genes, in situ gene tagging, multiple- or single-nucleotide mutagenesis, and inactivation of gene expression by introduction of stop codons. The successful development of the CRISPR-Cas9 toolkit will facilitate the application of M. maripaludis in archaeal biology research and biotechnology development, particularly CO2-derived biotechnologies.


aCPSF1 cooperates with terminator U-tract to dictate archaeal transcription termination efficacy.

  • Jie Li‎ et al.
  • eLife‎
  • 2021‎

Recently, aCPSF1 was reported to function as the long-sought global transcription termination factor of archaea; however, the working mechanism remains elusive. This work, through analyzing transcript-3'end-sequencing data of Methanococcus maripaludis, found genome-wide positive correlations of both the terminator uridine(U)-tract and aCPSF1 with hierarchical transcription termination efficacies (TTEs). In vitro assays determined that aCPSF1 specifically binds to the terminator U-tract with U-tract number-related binding affinity, and in vivo assays demonstrated the two elements are indispensable in dictating high TTEs, revealing that aCPSF1 and the terminator U-tract cooperatively determine high TTEs. The N-terminal KH domains equip aCPSF1 with specific-binding capacity to terminator U-tract and the aCPSF1-terminator U-tract cooperation; while the nuclease activity of aCPSF1 was also required for TTEs. aCPSF1 also guarantees the terminations of transcripts with weak intrinsic terminator signals. aCPSF1 orthologs from Lokiarchaeota and Thaumarchaeota exhibited similar U-tract cooperation in dictating TTEs. Therefore, aCPSF1 and the intrinsic U-rich terminator could work in a noteworthy two-in-one termination mode in archaea, which may be widely employed by archaeal phyla; using one trans-action factor to recognize U-rich terminator signal and cleave transcript 3'-end, the archaeal aCPSF1-dependent transcription termination may represent a simplified archetypal mode of the eukaryotic RNA polymerase II termination machinery.


Characterization of the Methanomicrobial Archaeal RNase Zs for Processing the CCA-Containing tRNA Precursors.

  • Xiaoyan Wang‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

RNase Z is a widely distributed and usually essential endoribonuclease involved in the 3'-end maturation of transfer RNAs (tRNAs). A CCA triplet that is needed for tRNA aminoacylation in protein translation is added by a nucleotidyl-transferase after the 3'-end processing by RNase Z. However, a considerable proportion of the archaeal pre-tRNAs genetically encode a CCA motif, while the enzymatic characteristics of the archaeal RNase (aRNase) Zs in processing CCA-containing pre-tRNAs remain unclear. This study intensively characterized two methanomicrobial aRNase Zs, the Methanolobus psychrophilus mpy-RNase Z and the Methanococcus maripaludis mmp-RNase Z, particularly focusing on the properties of processing the CCA-containing pre-tRNAs, and in parallel comparison with a bacterial bsu-RNase Z from Bacillus subtilis. Kinetic analysis found that Co2+ supplementation enhanced the cleavage efficiency of mpy-RNase Z, mmp-RNase Z, and bsu-RNase Z for 1400-, 2990-, and 34-fold, respectively, and Co2+ is even more indispensable to the aRNase Zs than to bsu-RNase Z. Mg2+ also elevated the initial cleavage velocity (V0) of bsu-RNase Z for 60.5-fold. The two aRNase Zs exhibited indiscriminate efficiencies in processing CCA-containing vs. CCA-less pre-tRNAs. However, V0 of bsu-RNase Z was markedly reduced for 1520-fold by the CCA motif present in pre-tRNAs under Mg2+ supplementation, but only 5.8-fold reduced under Co2+ supplementation, suggesting Co2+ could ameliorate the CCA motif inhibition on bsu-RNase Z. By 3'-RACE, we determined that the aRNase Zs cleaved just downstream the discriminator nucleotide and the CCA triplet in CCA-less and CCA-containing pre-tRNAs, thus exposing the 3'-end for linking CCA and the genetically encoded CCA triplet, respectively. The aRNase Zs, but not bsu-RNase Z, were also able to process the intron-embedded archaeal pre-tRNAs, and even process pre-tRNAs that lack the D, T, or anticodon arm, but strictly required the acceptor stem. In summary, the two methanomicrobial aRNase Zs use cobalt as a metal ligand and process a broad spectrum of pre-tRNAs, and the characteristics would extend our understandings on aRNase Zs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: