Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Immature myeloid progenitors promote disease progression in a mouse model of Barrett's-like metaplasia.

  • Jianping Kong‎ et al.
  • Oncotarget‎
  • 2015‎

Cdx2, an intestine specific transcription factor, is expressed in Barrett's esophagus (BE). We sought to determine if esophageal Cdx2 expression would accelerate the onset of metaplasia in the L2-IL-1β transgenic mouse model for Barrett's-like metaplasia. The K14-Cdx2::L2-IL-1β double transgenic mice had half as many metaplastic nodules as control L2-IL-1β mice. This effect was not due to a reduction in esophageal IL-1β mRNA levels nor diminished systemic inflammation. The diminished metaplasia was due to an increase in apoptosis in the K14-Cdx2::L2-IL-1β mice. Fluorescence activated cell sorting of immune cells infiltrating the metaplasia identified a population of CD11b+Gr-1+ cells that are significantly reduced in K14-Cdx2::L2-IL-1β mice. These cells have features of immature granulocytes and have immune-suppressing capacity. We demonstrate that the apoptosis in K14-Cdx2::L2-IL-1β mice is CD8+ T cell dependent, which CD11b+Gr-1+ cells are known to inhibit. Lastly, we show that key regulators of CD11b+Gr-1+ cell development, IL-17 and S100A9, are significantly diminished in the esophagus of K14-Cdx2::L2-IL-1β double transgenic mice. We conclude that metaplasia development in this mouse model for Barrett's-like metaplasia requires suppression of CD8+ cell dependent apoptosis, likely mediated by immune-suppressing CD11b+Gr-1+ immature myeloid cells.


Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia.

  • Michael Quante‎ et al.
  • Cancer cell‎
  • 2012‎

Esophageal adenocarcinoma (EAC) arises from Barrett esophagus (BE), intestinal-like columnar metaplasia linked to reflux esophagitis. In a transgenic mouse model of BE, esophageal overexpression of interleukin-1β phenocopies human pathology with evolution of esophagitis, Barrett-like metaplasia and EAC. Histopathology and gene signatures closely resembled human BE, with upregulation of TFF2, Bmp4, Cdx2, Notch1, and IL-6. The development of BE and EAC was accelerated by exposure to bile acids and/or nitrosamines, and inhibited by IL-6 deficiency. Lgr5(+) gastric cardia stem cells present in BE were able to lineage trace the early BE lesion. Our data suggest that BE and EAC arise from gastric progenitors due to a tumor-promoting IL-1β-IL-6 signaling cascade and Dll1-dependent Notch signaling.


SOX15 governs transcription in human stratified epithelia and a subset of esophageal adenocarcinomas.

  • Rita Sulahian‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2015‎

Intestinal metaplasia (Barrett's esophagus, BE) is the principal risk factor for esophageal adenocarcinoma (EAC). Study of the basis for BE has centered on intestinal factors, but loss of esophageal identity likely also reflects absence of key squamous-cell factors. As few determinants of stratified epithelial cell-specific gene expression are characterized, it is important to identify the necessary transcription factors.


IL-1β transgenic mouse model of inflammation driven esophageal and oral squamous cell carcinoma.

  • Sureshkumar Muthupalani‎ et al.
  • Scientific reports‎
  • 2023‎

Chronic inflammation is integral to the development of esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC), although the latter has not been associated with reflux esophagitis. The L2-IL-1β transgenic mice, expressing human interleukin (IL)-1β in the oral, esophageal and forestomach squamous epithelia feature chronic inflammation and a stepwise development of Barrett's esophagus-like metaplasia, dysplasia and adenocarcinoma at the squamo-columnar junction. However, the functional consequences of IL-1β-mediated chronic inflammation in the oral and esophageal squamous epithelia remain elusive. We report for the first time that in addition to the previously described Barrett's esophagus-like metaplasia, the L2-IL-1β mice also develop squamous epithelial dysplasia with progression to squamous cell carcinoma (SCC) in the esophagus and the tongue. L2-IL-1β showed age-dependent progression of squamous dysplasia to SCC with approximately 40% (n = 49) and 23.5% (n = 17) incidence rates for esophageal and tongue invasive SCC respectively, by 12-15 months of age. Interestingly, SCC development and progression in L2-IL-1β was similar in both Germ Free (GF) and Specific Pathogen Free (SPF) conditions. Immunohistochemistry revealed a T cell predominant inflammatory profile with enhanced expression of Ki67, Sox2 and the DNA double-strand break marker, γ-H2AX, in the dysplastic squamous epithelia of L2-IL-1β mice. Pro-inflammatory cytokines, immunomodulatory players, chemoattractants for inflammatory cells (T cells, neutrophils, eosinophils, and macrophages) and oxidative damage marker, iNOS, were significantly increased in the esophageal and tongue tissues of L2-IL-1β mice. Our recent findings have expanded the translational utility of the IL-1β mouse model to aid in further characterization of the key pathways of inflammation driven BE and EAC as well as ESCC and Oral SCC.


Flow based single cell analysis of the immune landscape distinguishes Barrett's esophagus from adjacent normal tissue.

  • Moen Sen‎ et al.
  • Oncotarget‎
  • 2019‎

Barrett's esophagus (BE) is metaplasia of the squamous epithelium to a specialized columnar epithelium. BE progresses through low- and high-grade dysplasia before developing into esophageal adenocarcinoma. The BE microenvironment is not well defined. We compare 12 human clinical BE and adjacent normal squamous epithelium biopsies using single cell immunophenotyping by flow cytometry. A cassette of 19 epithelial and immune cell markers was used to detect differences between cellular compartments in normal and BE tissues. We found that the BE microenvironment has an immunological landscape distinct from adjacent normal epithelium. BE has an increased percentage of epithelial cells with a concomitant decrease in the percentage of immune cells, accompanied by a shift in the immune landscape from a predominantly T cell rich microenvironment in normal tissue to a B cell rich landscape in BE tissue. Hierarchical clustering separates BE and normal samples into two discrete groups based upon our 19-marker panel, but also reveals unexpected, shared phenotypes for three patients. Our results suggest that flow based single cell analysis may have the potential for revealing clinically relevant differences between BE and normal adjacent tissue, and that surface immunophenotypes could identify specific subpopulations from dysplastic tissue for further investigation.


Cdx1 and c-Myc foster the initiation of transdifferentiation of the normal esophageal squamous epithelium toward Barrett's esophagus.

  • Douglas B Stairs‎ et al.
  • PloS one‎
  • 2008‎

Barrett's esophagus is a premalignant condition whereby the normal stratified squamous esophageal epithelium undergoes a transdifferentiation program resulting in a simple columnar epithelium reminiscent of the small intestine. These changes are typically associated with the stratified squamous epithelium chronically exposed to acid and bile salts as a result of gastroesophageal reflux disease (GERD). Despite this well-defined epidemiologic association between acid reflux and Barrett's esophagus, the genetic changes that induce this transdifferentiation process in esophageal keratinocytes have remained undefined.


Development and characterization of an organotypic model of Barrett's esophagus.

  • Rachelle E Kosoff‎ et al.
  • Journal of cellular physiology‎
  • 2012‎

Understanding the molecular and cellular processes underlying the development, maintenance, and progression of Barrett's esophagus (BE) presents an empirical challenge because there are no simple animal models and standard 2D cell culture can distort cellular processes. Here we describe a three-dimensional (3D) cell culture system to study BE. BE cell lines (CP-A, CP-B, CP-C, and CP-D) and esophageal squamous keratinocytes (EPC2) were cultured on a matrix consisting of esophageal fibroblasts and collagen. Comparison of growth and cytokeratin expression in the presence of all-trans retinoic acid or hydrochloric acid was made by immunohistochemistry and Alcian Blue staining to determine which treatments produced a BE phenotype of columnar cytokeratin expression in 3D culture. All-trans retinoic acid differentially affected the growth of BE cell lines in 3D culture. Notably, the non-dyplastic metaplasia-derived cell line (CP-A) expressed reduced squamous cytokeratins and enhanced columnar cytokeratins upon ATRA treatment. ATRA altered the EPC2 squamous cytokeratin profile towards a more columnar expression pattern. Cell lines derived from patients with high-grade dysplasia already expressed columnar cytokeratins and therefore did not show a systematic shift toward a more columnar phenotype with ATRA treatment. ATRA treatment, however, did reduce the squamoid-like multilayer stratification observed in all cell lines. As the first study to demonstrate long-term 3D growth of BE cell lines, we have determined that BE cells can be cultured for at least 3 weeks on a fibroblast/collagen matrix and that the use of ATRA causes a general reduction in squamous-like multilayered growth and an increase in columnar phenotype with the specific effects cell-line dependent.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: