Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 64 papers

Metabolome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants.

  • Jillian M Hagel‎ et al.
  • BMC plant biology‎
  • 2015‎

Recent progress toward the elucidation of benzylisoquinoline alkaloid (BIA) metabolism has focused on a small number of model plant species. Current understanding of BIA metabolism in plants such as opium poppy, which accumulates important pharmacological agents such as codeine and morphine, has relied on a combination of genomics and metabolomics to facilitate gene discovery. Metabolomics studies provide important insight into the primary biochemical networks underpinning specialized metabolism, and serve as a key resource for metabolic engineering, gene discovery, and elucidation of governing regulatory mechanisms. Beyond model plants, few broad-scope metabolomics reports are available for the vast number of plant species known to produce an estimated 2500 structurally diverse BIAs, many of which exhibit promising medicinal properties.


High abundance of Ralstonia solanacearum changed tomato rhizosphere microbiome and metabolome.

  • Tao Wen‎ et al.
  • BMC plant biology‎
  • 2020‎

Rhizosphere microbiome is dynamic and influenced by environment factors surrounded including pathogen invasion. We studied the effects of Ralstonia solanacearum pathogen abundance on rhizosphere microbiome and metabolome by using high throughput sequencing and GC-MS technology.


Metabolic-GWAS provides insights into genetic architecture of seed metabolome in buckwheat.

  • Sajad Majeed Zargar‎ et al.
  • BMC plant biology‎
  • 2023‎

Buckwheat (Fagopyrum spp.), belonging to the Polygonaceae family, is an ancient pseudo-cereal with high nutritional and nutraceutical properties. Buckwheat proteins are gluten-free and show balanced amino acid and micronutrient profiles, with higher content of health-promoting bioactive flavonoids that make it a golden crop of the future. Plant metabolome is increasingly gaining importance as a crucial component to understand the connection between plant physiology and environment and as a potential link between the genome and phenome. However, the genetic architecture governing the metabolome and thus, the phenome is not well understood. Here, we aim to obtain a deeper insight into the genetic architecture of seed metabolome in buckwheat by integrating high throughput metabolomics and genotyping-by-sequencing applying an array of bioinformatics tools for data analysis.


Genetic manipulation of putrescine biosynthesis reprograms the cellular transcriptome and the metabolome.

  • Andrew F Page‎ et al.
  • BMC plant biology‎
  • 2016‎

With the increasing interest in metabolic engineering of plants using genetic manipulation and gene editing technologies to enhance growth, nutritional value and environmental adaptation, a major concern is the potential of undesirable broad and distant effects of manipulating the target gene or metabolic step in the resulting plant. A comprehensive transcriptomic and metabolomic analysis of the product may shed some useful light in this regard. The present study used these two techniques with plant cell cultures to analyze the effects of genetic manipulation of a single step in the biosynthesis of polyamines because of their well-known roles in plant growth, development and stress responses.


Metabolome and transcriptome profiles in quinoa seedlings in response to potassium supply.

  • Tingzhi Huang‎ et al.
  • BMC plant biology‎
  • 2022‎

Quinoa (Chenopodium quinoa Willd.) is a herb within the Quinoa subfamily of Amaranthaceae, with remarkable environmental adaptability. Its edible young leaves and grains are rich in protein, amino acids, microorganisms, and minerals. Although assessing the effects of fertilization on quinoa yield and quality has become an intensive area of research focus, the associated underlying mechanisms remain unclear. As one of the three macro nutrients in plants, potassium has an important impact on plant growth and development. In this study, extensive metabolome and transcriptome analyses were conducted in quinoa seedlings 30 days after fertilizer application to characterize the growth response mechanism to potassium.  RESULTS: The differential metabolites and genes present in the seedlings of white and red quinoa cultivars were significantly enriched in the photosynthetic pathway. Moreover, the PsbQ enzyme on photosystem II and delta enzyme on ATP synthase were significantly down regulated in quinoa seedlings under potassium deficiency. Additionally, the differential metabolites and genes of red quinoa seedlings were significantly enriched in the arginine biosynthetic pathway.


Effects of various artificial agarwood-induction techniques on the metabolome of Aquilaria sinensis.

  • Ningnan Zhang‎ et al.
  • BMC plant biology‎
  • 2021‎

Agarwood is a highly sought-after resinous wood for uses in medicine, incense, and perfume production. To overcome challenges associated with agarwood production in Aquilaria sinensis, several artificial agarwood-induction treatments have been developed. However, the effects of these techniques on the metabolome of the treated wood samples are unknown. Therefore, the present study was conducted to evaluate the effects of four treatments: fire drill treatment (F), fire drill + brine treatment (FS), cold drill treatment (D) and cold drill + brine treatment (DS)) on ethanol-extracted oil content and metabolome profiles of treated wood samples from A. sinensis.


Transcriptome and metabolome reveal redirection of flavonoids in a white testa peanut mutant.

  • Liyun Wan‎ et al.
  • BMC plant biology‎
  • 2020‎

Coat color determines both appearance and nutrient quality of peanut. White seed coat in peanut can enhance the processing efficiency and quality of peanut oil. An integrative analysis of transcriptomes, metabolomes and histocytology was performed on wsc mutant and its wild type to investigate the regulatory mechanisms underlying color pigmentation.


Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis.

  • Elisabeth Georgii‎ et al.
  • BMC plant biology‎
  • 2017‎

Elevated temperature and reduced water availability are frequently linked abiotic stresses that may provoke distinct as well as interacting molecular responses. Based on non-targeted metabolomic and transcriptomic measurements from Arabidopsis rosettes, this study aims at a systematic elucidation of relevant components in different drought and heat scenarios as well as relationships between molecular players of stress response.


Transcriptome and metabolome profiling provide insights into molecular mechanism of pseudostem elongation in banana.

  • Guiming Deng‎ et al.
  • BMC plant biology‎
  • 2021‎

Banana plant height is an important trait for horticultural practices and semi-dwarf cultivars show better resistance to damages by wind and rain. However, the molecular mechanisms controlling the pseudostem height remain poorly understood. Herein, we studied the molecular changes in the pseudostem of a semi-dwarf banana mutant Aifen No. 1 (Musa spp. Pisang Awak sub-group ABB) as compared to its wild-type dwarf cultivar using a combined transcriptome and metabolome approach.


Metabolome of flue-cured tobacco is significantly affected by the presence of leaf stem.

  • Yingxue Li‎ et al.
  • BMC plant biology‎
  • 2023‎

Leaves of tobacco (Nicotiana tabacum L.) are flue-cured to use as a key industrial supply in various parts of the world. The quality of tobacco leaves is dependent on chemical components and their proportions. Generally, the stem attached to tobacco leaf is detached before curing. However, the leaf stem remains green for an extended period of time (as compared to leaf) during flue-curing. Hence, it is expected to affect the quality of tobacco's final product.


Towards a scientific interpretation of the terroir concept: plasticity of the grape berry metabolome.

  • Andrea Anesi‎ et al.
  • BMC plant biology‎
  • 2015‎

The definition of the terroir concept is one of the most debated issues in oenology and viticulture. The dynamic interaction among diverse factors including the environment, the grapevine plant and the imposed viticultural techniques means that the wine produced in a given terroir is unique. However, there is an increasing interest to define and quantify the contribution of individual factors to a specific terroir objectively. Here, we characterized the metabolome and transcriptome of berries from a single clone of the Corvina variety cultivated in seven different vineyards, located in three macrozones, over a 3-year trial period.


Metabolome and transcriptome profiling revealed the enhanced synthesis of volatile esters in Korla pear.

  • Yuan Liu‎ et al.
  • BMC plant biology‎
  • 2023‎

Flavor contributes to the sensory quality of fruits, including taste and aroma aspects. The quality of foods is related to their flavor-associated compounds. Pear fruits have a fruity sense of smell, and esters are the main contributor of the aroma. Korla pear are well known due to its unique aroma, but the mechanism and genes related to volatile synthesis have not been fully investigated.


Integrated analyses reveal the response of peanut to phosphorus deficiency on phenotype, transcriptome and metabolome.

  • Qi Wu‎ et al.
  • BMC plant biology‎
  • 2022‎

Phosphorus (P) is one of the most essential macronutrients for crops. The growth and yield of peanut (Arachis hypogaea L.) are always limited by P deficiency. However, the transcriptional and metabolic regulatory mechanisms were less studied. In this study, valuable phenotype, transcriptome and metabolome data were analyzed to illustrate the regulatory mechanisms of peanut under P deficiency stress.


Genetic and environmental variation impact the cuticular hydrocarbon metabolome on the stigmatic surfaces of maize.

  • Tesia Dennison‎ et al.
  • BMC plant biology‎
  • 2019‎

Simple non-isoprenoid hydrocarbons accumulate in discrete regions of the biosphere, including within bacteria and algae as a carbon and/or energy store, and the cuticles of plants and insects, where they may protect against environmental stresses. The extracellular cuticular surfaces of the stigmatic silks of maize are rich in linear hydrocarbons and therefore provide a convenient system to study the biological origins and functions of these unique metabolites.


Integrated transcriptome and metabolome analysis unveils the mechanism of color-transition in Edgeworthia chrysantha tepals.

  • Ningzhi Zhou‎ et al.
  • BMC plant biology‎
  • 2023‎

Edgeworthia chrysantha, a deciduous shrub endemic to China, is known for its high ornamental value, extensive cultivation history, and wide-ranging applications. However, theoretical research on this plant is severely lacking. While its flowering process displays striking color transitions from green (S1) to yellow (S2) and then to white (S3), the scientific exploration of this phenomenon is limited, and the underlying regulatory mechanisms are yet to be elucidated.


Metabolome and transcriptome analyses reveal chlorophyll and anthocyanin metabolism pathway associated with cucumber fruit skin color.

  • Min Wang‎ et al.
  • BMC plant biology‎
  • 2020‎

Fruit skin color play important role in commercial value of cucumber, which is mainly determined by the content and composition of chlorophyll and anthocyanins. Therefore, understanding the related genes and metabolomics involved in composition of fruit skin color is essential for cucumber quality and commodity value.


Metabolome and transcriptome analysis reveals the molecular profiles underlying the ginseng response to rusty root symptoms.

  • Xingbo Bian‎ et al.
  • BMC plant biology‎
  • 2021‎

Ginseng rusty root symptoms (GRS) is one of the primary diseases of ginseng. This disease leads to a severe decline in the quality of ginseng. It has been shown that the occurrence of GRS is associated with soil environmental degradation, which may involve changes in soil microbiology and physicochemical properties.


Modulation of volatile compound metabolome and transcriptome in grape berries exposed to sunlight under dry-hot climate.

  • Lei He‎ et al.
  • BMC plant biology‎
  • 2020‎

Basal leaf removal is widely practiced to increase grape cluster sunlight exposure that controls berry rot and improves quality. Studies on its influence on volatile compounds in grape berries have been performed mostly in Mediterranean or marine climate regions. It is uncertain whether similar efficiency can be achieved when grape berries are grown under continental climate. This study aimed to dissect the variation in volatile compound production and transcriptome in sunlight-exposed grape berries in a dry-hot climate region and to propose the key genes related to the variation.


Integrative analysis of metabolome and transcriptome profiles to highlight aroma determinants in Aglianico and Falanghina grape berries.

  • Clizia Villano‎ et al.
  • BMC plant biology‎
  • 2023‎

The biochemical makeup of grape berries at harvest is essential for wine quality and depends on a fine transcriptional regulation occurring during berry development. In this study, we conducted a comprehensive survey of transcriptomic and metabolomic changes occurring in different berry tissues and developmental stages of the ancient grapes Aglianico and Falanghina to establish the patterns of the secondary metabolites contributing to their wine aroma and investigate the underlying transcriptional regulation.


Integrated metabolome and transcriptome analysis unveils novel pathway involved in the fruit coloration of Nitraria tangutorum Bobr.

  • Huilong Zhang‎ et al.
  • BMC plant biology‎
  • 2023‎

The desert shrub Nitraria tangutorum Bobr. is important for its resistance to salt and alkali in Northwest China. It is an ecologically important species in this region and provides edible and medicinal berries. This study showed a mutant of N. tangutorum (named Jincan, JC) that has a strong yellow pericarp vs red in a wild type (represented by NT).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: