Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Localization of Fibrinogen in the Vasculo-Astrocyte Interface after Cortical Contusion Injury in Mice.

  • Nino Muradashvili‎ et al.
  • Brain sciences‎
  • 2017‎

Besides causing neuronal damage, traumatic brain injury (TBI) is involved in memory reduction, which can be a result of alterations in vasculo-neuronal interactions. Inflammation following TBI is involved in elevation of blood content of fibrinogen (Fg), which is known to enhance cerebrovascular permeability, and thus, enhance its deposition in extravascular space. However, the localization of Fg in the extravascular space and its possible interaction with nonvascular cells are not clear. The localization of Fg deposition in the extravascular space was defined in brain samples of mice after cortical contusion injury (CCI) and sham-operation (control) using immunohistochemistry and laser-scanning confocal microscopy. Memory changes were assessed with new object recognition and Y-maze tests. Data showed a greater deposition of Fg in the vascular and astrocyte endfeet interface in mice with CCI than in control animals. This effect was accompanied by enhanced neuronal degeneration and reduction in short-term memory in mice with CCI. Thus, our results suggest that CCI induces increased deposition of Fg in the vasculo-astrocyte interface, and is accompanied by neuronal degeneration, which may result in reduction of short-term memory.


Cerebrovascular disorders caused by hyperfibrinogenaemia.

  • Nino Muradashvili‎ et al.
  • The Journal of physiology‎
  • 2016‎

Hyperfibrinogenaemia (HFg) results in vascular remodelling, and fibrinogen (Fg) and amyloid β (Aβ) complex formation is a hallmark of Alzheimer's disease. However, the interconnection of these effects, their mechanisms and implications in cerebrovascular diseases are not known. Using a mouse model of HFg, we showed that at an elevated blood level, Fg increases cerebrovascular permeability via mainly caveolar protein transcytosis. This enhances deposition of Fg in subendothelial matrix and interstitium making the immobilized Fg a readily accessible substrate for binding Aβ and cellular prion protein (PrPC ), the protein that is thought to have a greater effect on memory than Aβ. We showed that enhanced formation of Fg-Aβ and Fg-PrPC complexes are associated with reduction in short-term memory. The present study delineates a new mechanistic pathway for vasculo-neuronal dysfunctions found in inflammatory cardiovascular and cerebrovascular diseases associated with an elevated blood level of Fg.


The Effects of Fibrinogen's Interactions with Its Neuronal Receptors, Intercellular Adhesion Molecule-1 and Cellular Prion Protein.

  • Nurul Sulimai‎ et al.
  • Biomolecules‎
  • 2021‎

Neuroinflammatory diseases, such as Alzheimer's disease (AD) and traumatic brain injury (TBI), are associated with the extravascular deposition of the fibrinogen (Fg) derivative fibrin and are accompanied with memory impairment. We found that during the hyperfibrinogenemia that typically occurs during AD and TBI, extravasated Fg was associated with amyloid beta and astrocytic cellular prion protein (PrPC). These effects coincided with short-term memory (STM) reduction and neurodegeneration. However, the mechanisms of a direct Fg-neuron interaction and its functional role in neurodegeneration are still unclear. Cultured mouse brain neurons were treated with Fg in the presence or absence of function-blockers of its receptors, PrPC or intercellular adhesion molecule-1 (ICAM-1). Associations of Fg with neuronal PrPC and ICAM-1 were characterized. The expression of proinflammatory marker interleukin 6 (IL-6) and the generation of reactive oxygen species (ROS), mitochondrial superoxide, and nitrite in neurons were assessed. Fg-induced neuronal death was also evaluated. A strong association of Fg with neuronal PrPC and ICAM-1, accompanied with overexpression of IL-6 and enhanced generation of ROS, mitochondrial superoxide, and nitrite as well as the resulting neuronal death, was found. These effects were reduced by blocking the function of neuronal PrPC and ICAM-1, suggesting that the direct interaction of Fg with its neuronal receptors can induce overexpression of IL-6 and increase the generation of ROS, nitrite, and mitochondrial superoxide, ultimately leading to neuronal death. These effects can be a mechanism of neurodegeneration and the resultant memory reduction seen during TBI and AD.


Effects of fibrinogen synthesis inhibition on vascular cognitive impairment during traumatic brain injury in mice.

  • Nino Muradashvili‎ et al.
  • Brain research‎
  • 2021‎

Traumatic brain injury (TBI) is associated with increased blood content of fibrinogen (Fg), called hyperfibrinogenemia (HFg), which results in enhanced cerebrovascular permeability and leads to short-term memory (STM) reduction. Previously, we showed that extravasated Fg was deposited in the vasculo-astrocyte interface and was co-localized with cellular prion protein (PrPC) during mild-to-moderate TBI in mice. These effects were accompanied by neurodegeneration and STM reduction. However, there was no evidence presented that the described effects were the direct result of the HFg during TBI. We now present data indicating that inhibition of Fg synthesis can ameliorate TBI-induced cerebrovascular permeability and STM reduction. Cortical contusion injury (CCI) was induced in C57BL/6J mice. Then mice were treated with either Fg antisense oligonucleotide (Fg-ASO) or with control-ASO for two weeks. Cerebrovascular permeability to fluorescently labeled bovine serum albumin was assessed in cortical venules following evaluation of STM with memory assessement tests. Separately, brain samples were collected in order to define the expression of PrPC via Western blotting while deposition and co-localization of Fg and PrPC, as well as gene expression of inflammatory marker activating transcription factor 3 (ATF3), were characterized with real-time PCR. Results showed that inhibition of Fg synthesis with Fg-ASO reduced overexpression of AFT3, ameliorated enhanced cerebrovascular permeability, decreased expression of PrPC and Fg deposition, decreased formation of Fg-PrPC complexes in brain, and improved STM. These data provide direct evidence that a CCI-induced inflammation-mediated HFg could be a triggering mechanism involved in vascular cognitive impairment seen previously in our studies during mild-to-moderate TBI.


Fibrinogen Interaction with Astrocyte ICAM-1 and PrPC Results in the Generation of ROS and Neuronal Death.

  • Nurul Sulimai‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Many neuroinflammatory diseases, like traumatic brain injury (TBI), are associated with an elevated level of fibrinogen and short-term memory (STM) impairment. We found that during TBI, extravasated fibrinogen deposited in vasculo-astrocyte interfaces, which was associated with neurodegeneration and STM reduction. The mechanisms of this fibrinogen-astrocyte interaction and its functional role in neurodegeneration are still unclear. Cultured mouse brain astrocytes were treated with fibrinogen in the presence or absence of function-blocking antibody or peptide against its astrocyte receptors intercellular adhesion molecule-1 (ICAM-1) or cellular prion protein (PrPC), respectively. Fibrinogen interactions with astrocytic ICAM-1 and PrPC were characterized. The expression of pro-inflammatory markers, generations of reactive oxygen species (ROS) and nitric oxide (NO) in astrocytes, and neuronal death caused by astrocyte-conditioned medium were assessed. Data showed a strong association between fibrinogen and astrocytic ICAM-1 or PrPC, overexpression of pro-inflammatory cytokines and overproduction of ROS and NO, resulting in neuronal apoptosis and death. These effects were reduced by blocking the function of astrocytic ICAM-1 and PrPC, suggesting that fibrinogen association with its astrocytic receptors induce the release of pro-inflammatory cytokines, resulting in oxidative stress, and ultimately neuronal death. This can be a mechanism of neurodegeneration and the resultant STM reduction seen during TBI.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: