Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer's disease mouse models.

  • Jean C Cruz Hernández‎ et al.
  • Nature neuroscience‎
  • 2019‎

Cerebral blood flow (CBF) reductions in Alzheimer's disease patients and related mouse models have been recognized for decades, but the underlying mechanisms and resulting consequences for Alzheimer's disease pathogenesis remain poorly understood. In APP/PS1 and 5xFAD mice we found that an increased number of cortical capillaries had stalled blood flow as compared to in wild-type animals, largely due to neutrophils that had adhered in capillary segments and blocked blood flow. Administration of antibodies against the neutrophil marker Ly6G reduced the number of stalled capillaries, leading to both an immediate increase in CBF and rapidly improved performance in spatial and working memory tasks. This study identified a previously uncharacterized cellular mechanism that explains the majority of the CBF reduction seen in two mouse models of Alzheimer's disease and demonstrated that improving CBF rapidly enhanced short-term memory function. Restoring cerebral perfusion by preventing neutrophil adhesion may provide a strategy for improving cognition in Alzheimer's disease patients.


Increasing cerebral blood flow improves cognition into late stages in Alzheimer's disease mice.

  • Oliver Bracko‎ et al.
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism‎
  • 2020‎

Alzheimer's disease is associated with a 20-30% reduction in cerebral blood flow. In the APP/PS1 mouse model of Alzheimer's disease, inhibiting neutrophil adhesion using an antibody against the neutrophil specific protein Ly6G was recently shown to drive rapid improvements in cerebral blood flow that was accompanied by an improvement in performance on short-term memory tasks. Here, in a longitudinal aging study, we assessed how far into disease development a single injection of anti-Ly6G treatment can acutely improve short-term memory function. We found that APP/PS1 mice as old as 15-16 months had improved performance on the object replacement and Y-maze tests of spatial and working short-term memory, measured at one day after anti-Ly6G treatment. APP/PS1 mice at 17-18 months of age or older did not show acute improvements in cognitive performance, although we did find that capillary stalls were still reduced and cerebral blood flow was still increased by 17% in 21-22-months-old APP/PS1 mice given anti-Ly6G antibody. These data add to the growing body of evidence suggesting that cerebral blood flow reductions are an important contributing factor to the cognitive dysfunction associated with neurodegenerative disease. Thus, interfering with neutrophil adhesion could be a new therapeutic approach for Alzheimer's disease.


A pilot study investigating the effects of voluntary exercise on capillary stalling and cerebral blood flow in the APP/PS1 mouse model of Alzheimer's disease.

  • Kaja Falkenhain‎ et al.
  • PloS one‎
  • 2020‎

Exercise exerts a beneficial effect on the major pathological and clinical symptoms associated with Alzheimer's disease in humans and mouse models of the disease. While numerous mechanisms for such benefits from exercise have been proposed, a clear understanding of the causal links remains elusive. Recent studies also suggest that cerebral blood flow in the brain of both Alzheimer's patients and mouse models of the disease is decreased and that the cognitive symptoms can be improved when blood flow is restored. We therefore hypothesized that the mitigating effect of exercise on the development and progression of Alzheimer's disease may be mediated through an increase in the otherwise reduced brain blood flow. To test this idea, we performed a pilot study to examine the impact of three months of voluntary wheel running in a small cohort of ~1-year-old APP/PS1 mice on short-term memory function, brain inflammation, amyloid deposition, and baseline cerebral blood flow. Our findings that exercise led to a trend toward improved spatial short-term memory, reduced brain inflammation, markedly increased neurogenesis in the dentate gyrus, and a reduction in hippocampal amyloid-beta deposits are consistent with other reports on the impact of exercise on the progression of Alzheimer's related symptoms in mouse models. Notably, we did not observe any impact of wheel running on overall baseline blood flow nor on the incidence of non-flowing capillaries, a mechanism we recently identified as one contributing factor to cerebral blood flow deficits in mouse models of Alzheimer's disease. Overall, our findings add to the emerging picture of differential effects of exercise on cognition and blood flow in Alzheimer's disease pathology by showing that capillary stalling is not decreased following exercise.


High fat diet worsens Alzheimer's disease-related behavioral abnormalities and neuropathology in APP/PS1 mice, but not by synergistically decreasing cerebral blood flow.

  • Oliver Bracko‎ et al.
  • Scientific reports‎
  • 2020‎

Obesity is linked to increased risk for and severity of Alzheimer's disease (AD). Cerebral blood flow (CBF) reductions are an early feature of AD and are also linked to obesity. We recently showed that non-flowing capillaries, caused by adhered neutrophils, contribute to CBF reduction in mouse models of AD. Because obesity could exacerbate the vascular inflammation likely underlying this neutrophil adhesion, we tested links between obesity and AD by feeding APP/PS1 mice a high fat diet (Hfd) and evaluating behavioral, physiological, and pathological changes. We found trends toward poorer memory performance in APP/PS1 mice fed a Hfd, impaired social interactions with either APP/PS1 genotype or a Hfd, and synergistic impairment of sensory-motor function in APP/PS1 mice fed a Hfd. The Hfd led to increases in amyloid-beta monomers and plaques in APP/PS1 mice, as well as increased brain inflammation. These results agree with previous reports showing obesity exacerbates AD-related pathology and symptoms in mice. We used a crowd-sourced, citizen science approach to analyze imaging data to determine the impact of the APP/PS1 genotype and a Hfd on capillary stalling and CBF. Surprisingly, we did not see an increase in the number of non-flowing capillaries or a worsening of the CBF deficit in APP/PS1 mice fed a Hfd as compared to controls, suggesting that capillary stalling is not a mechanistic link between a Hfd and increased severity of AD in mice. Reducing capillary stalling by blocking neutrophil adhesion improved CBF and short-term memory function in APP/PS1 mice, even when fed a Hfd.


VEGF signalling causes stalls in brain capillaries and reduces cerebral blood flow in Alzheimer's mice.

  • Muhammad Ali‎ et al.
  • Brain : a journal of neurology‎
  • 2022‎

Increased incidence of stalled capillary blood flow caused by adhesion of leucocytes to the brain microvascular endothelium leads to a 17% reduction of cerebral blood flow and exacerbates short-term memory loss in multiple mouse models of Alzheimer's disease. Here, we report that vascular endothelial growth factor (VEGF) signalling at the luminal side of the brain microvasculature plays an integral role in the capillary stalling phenomenon of the APP/PS1 mouse model. Administration of the anti-mouse VEGF-A164 antibody, an isoform that inhibits blood-brain barrier hyperpermeability, reduced the number of stalled capillaries within an hour of injection, leading to an immediate increase in average capillary blood flow but not capillary diameter. VEGF-A inhibition also reduced the overall endothelial nitric oxide synthase protein concentrations, increased occludin levels and decreased the penetration of circulating Evans Blue dye across the blood-brain barrier into the brain parenchyma, suggesting increased blood-brain barrier integrity. Capillaries prone to neutrophil adhesion after anti-VEGF-A treatment also had lower occludin concentrations than flowing capillaries. Taken together, our findings demonstrate that VEGF-A signalling in APP/PS1 mice contributes to aberrant endothelial nitric oxide synthase /occludin-associated blood-brain barrier permeability, increases the incidence of capillary stalls, and leads to reductions in cerebral blood flow. Reducing leucocyte adhesion by inhibiting luminal VEGF signalling may provide a novel and well-tolerated strategy for improving brain microvascular blood flow in Alzheimer's disease patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: