Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Narratives bridge the divide between distant events in episodic memory.

  • Brendan I Cohn-Sheehy‎ et al.
  • Memory & cognition‎
  • 2022‎

Many studies suggest that information about past experience, or episodic memory, is divided into discrete units called "events." Yet we can often remember experiences that span multiple events. Events that occur in close succession might simply be linked because of their proximity to one another, but we can also build links between events that occur farther apart in time. Intuitively, some kind of organizing principle should enable temporally distant events to become bridged in memory. We tested the hypothesis that episodic memory exhibits a narrative-level organization, enabling temporally distant events to be better remembered if they form a coherent narrative. Furthermore, we tested whether post-encoding memory consolidation is necessary to integrate temporally distant events. In three experiments, participants learned and subsequently recalled events from fictional stories, in which pairs of temporally distant events involving side characters ("sideplots") either formed one coherent narrative or two unrelated narratives. Across participants, we varied whether recall was assessed immediately after learning, or after a delay: 24 hours, 12 hours between morning and evening ("wake"), or 12 hours between evening and morning ("sleep"). Participants recalled more information about coherent than unrelated narrative events, in most delay conditions, including immediate recall and wake conditions, suggesting that post-encoding consolidation was not necessary to integrate temporally distant events into a larger narrative. Furthermore, post hoc modeling across experiments suggested that narrative coherence facilitated recall over and above any effects of sentence-level semantic similarity. This reliable memory benefit for coherent narrative events supports theoretical accounts which propose that narratives provide a high-level architecture for episodic memory.


Delay-dependent contributions of medial temporal lobe regions to episodic memory retrieval.

  • Maureen Ritchey‎ et al.
  • eLife‎
  • 2015‎

The medial temporal lobes play an important role in episodic memory, but over time, hippocampal contributions to retrieval may be diminished. However, it is unclear whether such changes are related to the ability to retrieve contextual information, and whether they are common across all medial temporal regions. Here, we used functional neuroimaging to compare neural responses during immediate and delayed recognition. Results showed that recollection-related activity in the posterior hippocampus declined after a 1-day delay. In contrast, activity was relatively stable in the anterior hippocampus and in neocortical areas. Multi-voxel pattern similarity analyses also revealed that anterior hippocampal patterns contained information about context during item recognition, and after a delay, context coding in this region was related to successful retention of context information. Together, these findings suggest that the anterior and posterior hippocampus have different contributions to memory over time and that neurobiological models of memory must account for these differences.


Episodic memory function is associated with multiple measures of white matter integrity in cognitive aging.

  • Samuel N Lockhart‎ et al.
  • Frontiers in human neuroscience‎
  • 2012‎

Previous neuroimaging research indicates that white matter injury and integrity, measured respectively by white matter hyperintensities (WMH) and fractional anisotropy (FA) obtained from diffusion tensor imaging (DTI), differ with aging and cerebrovascular disease (CVD) and are associated with episodic memory deficits in cognitively normal older adults. However, knowledge about tract-specific relationships between WMH, FA, and episodic memory in aging remains limited. We hypothesized that white matter connections between frontal cortex and subcortical structures as well as connections between frontal and temporo-parietal cortex would be most affected. In the current study, we examined relationships between WMH, FA and episodic memory in 15 young adults, 13 elders with minimal WMH and 15 elders with extensive WMH, using an episodic recognition memory test for object-color associations. Voxel-based statistics were used to identify voxel clusters where white matter measures were specifically associated with variations in episodic memory performance, and white matter tracts intersecting these clusters were analyzed to examine white matter-memory relationships. White matter injury and integrity measures were significantly associated with episodic memory in extensive regions of white matter, located predominantly in frontal, parietal, and subcortical regions. Template based tractography indicated that white matter injury, as measured by WMH, in the uncinate and inferior longitudinal fasciculi were significantly negatively associated with episodic memory performance. Other tracts such as thalamo-frontal projections, superior longitudinal fasciculus, and dorsal cingulum bundle demonstrated strong negative associations as well. The results suggest that white matter injury to multiple pathways, including connections of frontal and temporal cortex and frontal-subcortical white matter tracts, plays a critical role in memory differences seen in older individuals.


Cognitive Control of Episodic Memory in Schizophrenia: Differential Role of Dorsolateral and Ventrolateral Prefrontal Cortex.

  • John D Ragland‎ et al.
  • Frontiers in human neuroscience‎
  • 2015‎

Dorsal (DLPFC) and ventral (VLPFC) subregions in lateral prefrontal cortex play distinct roles in episodic memory, and both are implicated in schizophrenia. We test the hypothesis that schizophrenia differentially impairs DLPFC versus VLPFC control of episodic encoding.


CA1 and CA3 differentially support spontaneous retrieval of episodic contexts within human hippocampal subfields.

  • Halle R Dimsdale-Zucker‎ et al.
  • Nature communications‎
  • 2018‎

The hippocampus plays a critical role in spatial and episodic memory. Mechanistic models predict that hippocampal subfields have computational specializations that differentially support memory. However, there is little empirical evidence suggesting differences between the subfields, particularly in humans. To clarify how hippocampal subfields support human spatial and episodic memory, we developed a virtual reality paradigm where participants passively navigated through houses (spatial contexts) across a series of videos (episodic contexts). We then used multivariate analyses of high-resolution fMRI data to identify neural representations of contextual information during recollection. Multi-voxel pattern similarity analyses revealed that CA1 represented objects that shared an episodic context as more similar than those from different episodic contexts. CA23DG showed the opposite pattern, differentiating between objects encountered in the same episodic context. The complementary characteristics of these subfields explain how we can parse our experiences into cohesive episodes while retaining the specific details that support vivid recollection.


The hippocampus supports high-precision binding in visual working memory.

  • Alyssa A Borders‎ et al.
  • Hippocampus‎
  • 2022‎

It is well established that the hippocampus is critical for long-term episodic memory, but a growing body of research suggests that it also plays a critical role in supporting memory over very brief delays as measured in tests of working memory (WM). However, the circumstances under which the hippocampus is necessary for WM and the specific processes that it supports remain controversial. We propose that the hippocampus supports WM by binding together high-precision properties of an event, and we test this claim by examining the precision of color-location bindings in a visual WM task in which participants report the precise color of studied items using a continuous color wheel. Amnestic patients with hippocampal damage were significantly impaired at retrieving these colors after a 1-s delay, and these impairments reflected a reduction in the precision of those memories rather than increases in total memory failures or binding errors. Moreover, a parallel fMRI study in healthy subjects revealed that neural activity in the head and body of the hippocampus was directly related to the precision of visual WM decisions. Together, these results indicate that the hippocampus is critical in complex high-precision binding that supports memory over brief delays.


Examining ERP correlates of recognition memory: evidence of accurate source recognition without recollection.

  • Richard J Addante‎ et al.
  • NeuroImage‎
  • 2012‎

Recollection is typically associated with high recognition confidence and accurate source memory. However, subjects sometimes make accurate source memory judgments even for items that are not confidently recognized, and it is not known whether these responses are based on recollection or some other memory process. In the current study, we measured event related potentials (ERPs) while subjects made item and source memory confidence judgments in order to determine whether recollection supported accurate source recognition responses for items that were not confidently recognized. In line with previous studies, we found that recognition memory was associated with two ERP effects: an early on-setting FN400 effect, and a later parietal old-new effect [late positive component (LPC)], which have been associated with familiarity and recollection, respectively. The FN400 increased gradually with item recognition confidence, whereas the LPC was only observed for highly confident recognition responses. The LPC was also related to source accuracy, but only for items that had received a high confidence item recognition response; accurate source judgments to items that were less confidently recognized did not exhibit the typical ERP correlate of recollection or familiarity, but rather showed a late, broadly distributed negative ERP difference. The results indicate that accurate source judgments of episodic context can occur even when recollection fails.


The hippocampus and orbitofrontal cortex jointly represent task structure during memory-guided decision making.

  • Eda Mızrak‎ et al.
  • Cell reports‎
  • 2021‎

The hippocampus, well known for its role in episodic memory, might also be an important brain region for extracting structure from our experiences in order to guide future decisions. Recent evidence in rodents suggests that the hippocampus supports decision making by representing task structure in cooperation with the orbitofrontal cortex (OFC). Here, we examine how the human hippocampus and OFC represent task structure during an associative learning task that required learning of both context-determined and context-invariant probabilistic associations. We find that after learning, hippocampal and lateral OFC representations differentiated between context-determined and context-invariant task structures. The degree of this differentiation within the hippocampus and lateral OFC is highly correlated. These results advance our understanding of the hippocampus and suggest that the hippocampus and OFC support goal-directed behavior by representing information that guides the selection of appropriate decision strategies.


Cortical and subcortical contributions to sequence retrieval: Schematic coding of temporal context in the neocortical recollection network.

  • Liang-Tien Hsieh‎ et al.
  • NeuroImage‎
  • 2015‎

Episodic memory entails the ability to remember what happened when. Although the available evidence indicates that the hippocampus plays a role in structuring serial order information during retrieval of event sequences, information processed in the hippocampus must be conveyed to other cortical and subcortical areas in order to guide behavior. However, the extent to which other brain regions contribute to the temporal organization of episodic memory remains unclear. Here, we examined multivoxel activity pattern changes during retrieval of learned and random object sequences, focusing on a neocortical "core recollection network" that includes the medial prefrontal cortex, retrosplenial cortex, and angular gyrus, as well as on striatal areas including the caudate nucleus and putamen that have been implicated in processing of sequence information. The results demonstrate that regions of the core recollection network carry information about temporal positions within object sequences, irrespective of object information. This schematic coding of temporal information is in contrast to the putamen, which carried information specific to objects in learned sequences, and the caudate, which carried information about objects, irrespective of sequence context. Our results suggest a role for the cortical recollection network in the representation of temporal structure of events during episodic retrieval, and highlight the possible mechanisms by which the striatal areas may contribute to this process. More broadly, the results indicate that temporal sequence retrieval is a useful paradigm for dissecting the contributions of specific brain regions to episodic memory.


Flexible reuse of cortico-hippocampal representations during encoding and recall of naturalistic events.

  • Zachariah M Reagh‎ et al.
  • Nature communications‎
  • 2023‎

Although every life event is unique, there are considerable commonalities across events. However, little is known about whether or how the brain flexibly represents information about different event components at encoding and during remembering. Here, we show that different cortico-hippocampal networks systematically represent specific components of events depicted in videos, both during online experience and during episodic memory retrieval. Regions of an Anterior Temporal Network represented information about people, generalizing across contexts, whereas regions of a Posterior Medial Network represented context information, generalizing across people. Medial prefrontal cortex generalized across videos depicting the same event schema, whereas the hippocampus maintained event-specific representations. Similar effects were seen in real-time and recall, suggesting reuse of event components across overlapping episodic memories. These representational profiles together provide a computationally optimal strategy to scaffold memory for different high-level event components, allowing efficient reuse for event comprehension, recollection, and imagination.


Expected reward modulates encoding-related theta activity before an event.

  • Matthias J Gruber‎ et al.
  • NeuroImage‎
  • 2013‎

Oscillatory brain activity in the theta frequency range (4-8 Hz) before the onset of an event has been shown to affect the likelihood of successfully encoding the event into memory. Recent work has also indicated that frontal theta activity might be modulated by reward, but it is not clear how reward expectancy, anticipatory theta activity, and memory formation might be related. Here, we used scalp electroencephalography (EEG) to assess the relationship between these factors. EEG was recorded from healthy adults while they memorized a series of words. Each word was preceded by a cue that indicated whether a high or low monetary reward would be earned if the word was successfully remembered in a later recognition test. Frontal theta power between the presentation of the reward cue and the onset of a word was predictive of later memory for the word, but only in the high reward condition. No theta differences were observed before word onset following low reward cues. The magnitude of prestimulus encoding-related theta activity in the high reward condition was correlated with the number of high reward words that were later confidently recognized. These findings provide strong evidence for a link between reward expectancy, theta activity, and memory encoding. Theta activity before event onset seems to be especially important for the encoding of motivationally significant stimuli. One possibility is that dopaminergic activity during reward anticipation mediates frontal theta activity related to memory.


Intrinsic connectivity reveals functionally distinct cortico-hippocampal networks in the human brain.

  • Alexander J Barnett‎ et al.
  • PLoS biology‎
  • 2021‎

Episodic memory depends on interactions between the hippocampus and interconnected neocortical regions. Here, using data-driven analyses of resting-state functional magnetic resonance imaging (fMRI) data, we identified the networks that interact with the hippocampus-the default mode network (DMN) and a "medial temporal network" (MTN) that included regions in the medial temporal lobe (MTL) and precuneus. We observed that the MTN plays a critical role in connecting the visual network to the DMN and hippocampus. The DMN could be further divided into 3 subnetworks: a "posterior medial" (PM) subnetwork comprised of posterior cingulate and lateral parietal cortices; an "anterior temporal" (AT) subnetwork comprised of regions in the temporopolar and dorsomedial prefrontal cortex; and a "medial prefrontal" (MP) subnetwork comprised of regions primarily in the medial prefrontal cortex (mPFC). These networks vary in their functional connectivity (FC) along the hippocampal long axis and represent different kinds of information during memory-guided decision-making. Finally, a Neurosynth meta-analysis of fMRI studies suggests new hypotheses regarding the functions of the MTN and DMN subnetworks, providing a framework to guide future research on the neural architecture of episodic memory.


Perirhinal cortex supports encoding and familiarity-based recognition of novel associations.

  • A Logan Haskins‎ et al.
  • Neuron‎
  • 2008‎

Results from imaging and lesion studies of item recognition memory have suggested that the hippocampus supports memory for the arbitrary associations that form the basis of episodic recollection, whereas the perirhinal cortex (PRc) supports familiarity for individual items. This view has been challenged, however, by findings showing that PRc may contribute to associative recognition, a task thought to measure relational or recollective memory. Here, using functional magnetic resonance imaging, we demonstrate that PRc activity is increased when pairs of items are processed as a single configuration or unit and that this activity predicts subsequent familiarity-based associative memory. These results explain the discrepancy in the literature by showing that novel associations can be encoded in a unitized manner, thereby allowing PRc to support associative recognition based on familiarity.


Aging alters neural activity at event boundaries in the hippocampus and Posterior Medial network.

  • Zachariah M Reagh‎ et al.
  • Nature communications‎
  • 2020‎

Recent research has highlighted a role for the hippocampus and a Posterior Medial cortical network in signaling event boundaries. However, little is known about whether or how these neural processes change over the course of healthy aging. Here, 546 cognitively normal participants 18-88 years old viewed a short movie while brain activity was measured using fMRI. The hippocampus and regions of the Posterior Medial network show increased activity at event boundaries, but these boundary-evoked responses decrease with age. Boundary-evoked activity in the posterior hippocampus predicts performance on a separate test of memory for stories, suggesting that hippocampal activity during event segmentation may be a broad indicator of individual differences in episodic memory ability. In contrast, boundary-evoked responses in the medial prefrontal cortex and middle temporal gyrus increase across the age range. These findings suggest that aging may alter neural processes for segmenting and remembering continuous real-world experiences.


Adaptive task difficulty influences neural plasticity and transfer of training.

  • Kristin E Flegal‎ et al.
  • NeuroImage‎
  • 2019‎

The efficacy of cognitive training is controversial, and research progress in the field requires an understanding of factors that promote transfer of training gains and their relationship to changes in brain activity. One such factor may be adaptive task difficulty, as adaptivity is predicted to facilitate more efficient processing by creating a prolonged mismatch between the supply of, and the demand upon, neural resources. To test this hypothesis, we measured behavioral and neural plasticity in fMRI sessions before and after 10 sessions of working memory updating (WMU) training, in which the difficulty of practiced tasks either adaptively increased in response to performance or was fixed. Adaptive training resulted in transfer to an untrained episodic memory task and activation decreases in striatum and hippocampus on a trained WMU task, and the amount of training task improvement was associated with near transfer to other WMU tasks and with hippocampal activation changes on both near and far transfer tasks. These findings suggest that cognitive training programs should incorporate adaptive task difficulty to broaden transfer of training gains and maximize efficiency of task-related brain activity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: