Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 127 papers

Low expression of the PPARγ-regulated gene thioredoxin-interacting protein accompanies human melanoma progression and promotes experimental lung metastases.

  • Patrick Meylan‎ et al.
  • Scientific reports‎
  • 2021‎

The thioredoxin system plays key roles in regulating cancer cell malignancy. Here we identify the Thioredoxin-interacting protein (TXNIP) as a gene, which expression is regulated by PPARγ in melanoma cells. We show that high TXNIP expression levels associate with benign melanocytic lesions, with tumor regression in patients on MAP kinase targeted therapy, with decreased proliferation in patients' melanoma biopsies, and with cell cycle arrest in human melanoma cell lines. In contrast, reduced TXNIP expression associates with advanced melanoma and with disease progression in patients. TXNIP depletion in human melanoma cells altered the expression of integrin beta-3 and the localization of the integrin alpha-v/beta-3 dimer at their surface. Moreover, TXNIP depletion affected human melanoma cell motility and improved their capacity to colonize mouse lungs in an in vivo assay. This study establishes TXNIP as a PPARγ-regulated gene in melanoma cells, thereby suggesting a link between these two proteins both involved in the regulation of cancer and of energy metabolism. It also reveals that the decrease in TXNIP expression, which is observed in advanced patient tumors, likely favors lung metastatic seeding of malignant cells.


Genome-wide methylated CpG island profiles of melanoma cells reveal a melanoma coregulation network.

  • Jian-Liang Li‎ et al.
  • Scientific reports‎
  • 2013‎

Metastatic melanoma is a malignant cancer with generally poor prognosis, with no targeted chemotherapy. To identify epigenetic changes related to melanoma, we have determined genome-wide methylated CpG island distributions by next-generation sequencing. Melanoma chromosomes tend to be differentially methylated over short CpG island tracts. CpG islands in the upstream regulatory regions of many coding and noncoding RNA genes, including, for example, TERC, which encodes the telomerase RNA, exhibit extensive hypermethylation, whereas several repeated elements, such as LINE 2, and several LTR elements, are hypomethylated in advanced stage melanoma cell lines. By using CpG island demethylation profiles, and by integrating these data with RNA-seq data obtained from melanoma cells, we have identified a co-expression network of differentially methylated genes with significance for cancer related functions. Focused assays of melanoma patient tissue samples for CpG island methylation near the noncoding RNA gene SNORD-10 demonstrated high specificity.


CEACAM1 promotes melanoma metastasis and is involved in the regulation of the EMT associated gene network in melanoma cells.

  • Daniel Wicklein‎ et al.
  • Scientific reports‎
  • 2018‎

We investigated the functional role of CEACAM1 in a spontaneous metastasis xenograft model of human melanoma in scid mice using BRAF wildtype MeWo cells with and without RNAi mediated knockdown of CEACAM1. Tumors from the xenograft model were subjected to whole genome expression analysis and metastasis was quantified histologically. Results and identified markers were verified using tissue samples of over 100 melanoma patients. Knockdown of CEACAM1 prolonged the animals' survival by significantly reducing subcutaneous growth of MeWo tumors and spontaneous lung metastasis. Microarray analysis revealed a strong influence of CEACAM1 knockdown on the network of EMT associated genes in the xenograft tumors (e.g. downregulation of BRAF, FOSL1, NRAS and TWIST). IGFBP7 and Latexin (highest up- and downregulated expression in microarray analysis) were found to be associated with longer and shorter survival, respectively, of melanoma patients. High FOSL1 and altered TWIST1 expression were found to be correlated with shortened survival in the cohort of melanoma patients. After a stepwise selection procedure combining above markers, multivariate analysis revealed IGFBP7, Latexin and altered TWIST to be prognostic markers for death. CEACAM1 could be a target for melanoma therapy as an alternative to (or in combination with) immune checkpoint and BRAF inhibitors.


Melanoma proteomics suggests functional differences related to mutational status.

  • Lucía Trilla-Fuertes‎ et al.
  • Scientific reports‎
  • 2019‎

Melanoma is the most lethal cutaneous cancer. New drugs have recently appeared; however, not all patients obtain a benefit of these new drugs. For this reason, it is still necessary to characterize melanoma at molecular level. The aim of this study was to explore the molecular differences between melanoma tumor subtypes, based on BRAF and NRAS mutational status. Fourteen formalin-fixed, paraffin-embedded melanoma samples were analyzed using a high-throughput proteomics approach, combined with probabilistic graphical models and Flux Balance Analysis, to characterize these differences. Proteomics analyses showed differences in expression of proteins related with fatty acid metabolism, melanogenesis and extracellular space between BRAF mutated and BRAF non-mutated melanoma tumors. Additionally, probabilistic graphical models showed differences between melanoma subgroups at biological processes such as melanogenesis or metabolism. On the other hand, Flux Balance Analysis predicts a higher tumor growth rate in BRAF mutated melanoma samples. In conclusion, differential biological processes between melanomas showing a specific mutational status can be detected using combined proteomics and computational approaches.


Identification of novel chemotherapeutic strategies for metastatic uveal melanoma.

  • Paolo Fagone‎ et al.
  • Scientific reports‎
  • 2017‎

Melanoma of the uveal tract accounts for approximately 5% of all melanomas and represents the most common primary intraocular malignancy. Despite improvements in diagnosis and more effective local therapies for primary cancer, the rate of metastatic death has not changed in the past forty years. In the present study, we made use of bioinformatics to analyze the data obtained from three public available microarray datasets on uveal melanoma in an attempt to identify novel putative chemotherapeutic options for the liver metastatic disease. We have first carried out a meta-analysis of publicly available whole-genome datasets, that included data from 132 patients, comparing metastatic vs. non metastatic uveal melanomas, in order to identify the most relevant genes characterizing the spreading of tumor to the liver. Subsequently, the L1000CDS2 web-based utility was used to predict small molecules and drugs targeting the metastatic uveal melanoma gene signature. The most promising drugs were found to be Cinnarizine, an anti-histaminic drug used for motion sickness, Digitoxigenin, a precursor of cardiac glycosides, and Clofazimine, a fat-soluble iminophenazine used in leprosy. In vitro and in vivo validation studies will be needed to confirm the efficacy of these molecules for the prevention and treatment of metastatic uveal melanoma.


Runx2 stimulates neoangiogenesis through the Runt domain in melanoma.

  • Daniela Cecconi‎ et al.
  • Scientific reports‎
  • 2019‎

Runx2 is a transcription factor involved in melanoma cell migration and proliferation. Here, we extended the analysis of Runt domain of Runx2 in melanoma cells to deepen understanding of the underlying mechanisms. By the CRISPR/Cas9 system we generated the Runt KO melanoma cells 3G8. Interestingly, the proteome analysis showed a specific protein signature of 3G8 cells related to apoptosis and migration, and pointed out the involvement of Runt domain in the neoangiogenesis process. Among the proteins implicated in angiogenesis we identified fatty acid synthase, chloride intracellular channel protein-4, heat shock protein beta-1, Rho guanine nucleotide exchange factor 1, D-3-phosphoglycerate dehydrogenase, myosin-1c and caveolin-1. Upon querying the TCGA provisional database for melanoma, the genes related to these proteins were found altered in 51.36% of total patients. In addition, VEGF gene expression was reduced in 3G8 as compared to A375 cells; and HUVEC co-cultured with 3G8 cells expressed lower levels of CD105 and CD31 neoangiogenetic markers. Furthermore, the tube formation assay revealed down-regulation of capillary-like structures in HUVEC co-cultured with 3G8 in comparison to those with A375 cells. These findings provide new insight into Runx2 molecular details which can be crucial to possibly propose it as an oncotarget of melanoma.


Small Molecules Antagonise the MIA-Fibronectin Interaction in Malignant Melanoma.

  • King Tuo Yip‎ et al.
  • Scientific reports‎
  • 2016‎

Melanoma inhibitory activity (MIA), an extracellular protein highly expressed by malignant melanoma cells, plays an important functional role in melanoma development, progression, and metastasis. After its secretion, MIA directly interacts with extracellular matrix proteins, such as fibronectin (FN). By this mechanism, MIA actively facilitates focal cell detachment from surrounding structures and strongly promotes tumour cell invasion and migration. Hence, the molecular understanding of MIA's function provides a promising target for the development of new strategies in malignant melanoma therapy. Here, we describe for the first time the discovery of small molecules that are able to disrupt the MIA-FN complex by selectively binding to a new druggable pocket, which we could identify on MIA by structural analysis and fragment-based screening. Our findings may inspire novel drug discovery efforts aiming at a therapeutically effective treatment of melanoma by targeting MIA.


Extracellular Vesicles Shedding Promotes Melanoma Growth in Response to Chemotherapy.

  • Luciana Nogueira de Sousa Andrade‎ et al.
  • Scientific reports‎
  • 2019‎

Extracellular vesicles (EVs) are emerging as key players in intercellular communication. EVs can transfer biological macromolecules to recipient cells, modulating various physiological and pathological processes. It has been shown that tumor cells secrete large amounts of EVs that can be taken up by malignant and stromal cells, dictating tumor progression. In this study, we investigated whether EVs secreted by melanoma cells in response to chemotherapy modulate tumor response to alkylating drugs. Our findings showed that human and murine melanoma cells secrete more EVs after treatment with temozolomide and cisplatin. We observed that EVs shed by melanoma cells after temozolomide treatment modify macrophage phenotype by skewing macrophage activation towards the M2 phenotype through upregulation of M2-marker genes. Moreover, these EVs were able to favor melanoma re-growth in vivo, which was accompanied by an increase in Arginase 1 and IL10 gene expression levels by stromal cells and an increase in genes related to DNA repair, cell survival and stemness in tumor cells. Taken together, this study suggests that EVs shed by tumor cells in response to chemotherapy promote tumor repopulation and treatment failure through cellular reprogramming in melanoma cells.


Intradermal delivery of STAT3 siRNA to treat melanoma via dissolving microneedles.

  • Jingtong Pan‎ et al.
  • Scientific reports‎
  • 2018‎

Hyperactivity of signal transducer and activity of transcription 3 (STAT3) plays a crucial role in melanoma invasion and metastasis. Gene therapy applying siRNA targeting STAT3 is a potential therapeutic strategy for melanoma. In this article, we first fabricated safe and novel dissolving microneedles (MNs) for topical application of STAT3 siRNA to enhance the skin penetration of siRNA and used polyethylenimine (PEI, 25 kDa) as carrier to improve cellular uptake of siRNA. The results showed that MNs can effectively penetrate skin and rapidly dissolve in the skin. In vitro B16F10 cell experiments presented that STAT3 siRNA PEI complex can enhance cellular uptake and transfection of siRNA, correspondingly enhance gene silencing efficiency and inhibit tumor cells growth. In vivo experiments indicated that topical application of STAT3 siRNA PEI complex delivered by dissolving MNs into skin can effectively suppress the development of melanoma through silencing STAT3 gene, and the inhibition effect is dose-dependent. STAT3 siRNA delivery via dissolving MNs is a promising approach for skin melanoma treatment with targeting inhibition efficacy and minimal adverse effects.


Nifuroxazide exerts potent anti-tumor and anti-metastasis activity in melanoma.

  • Yongxia Zhu‎ et al.
  • Scientific reports‎
  • 2016‎

Melanoma is a highly malignant neoplasm of melanocytes with considerable metastatic potential and drug resistance, explaining the need for new candidates that inhibit tumor growth and metastasis. The signal transducer and activator of the transcription 3 (Stat3) signaling pathway plays an important role in melanoma and has been validated as promising anticancer target for melanoma therapy. In this study, nifuroxazide, an antidiarrheal agent identified as an inhibitor of Stat3, was evaluated for its anti-melanoma activity in vitro and in vivo. It had potent anti-proliferative activity against various melanoma cell lines and could induce G2/M phase arrest and cell apoptosis. Moreover, nifuroxazide markedly impaired melanoma cell migration and invasion by down-regulating phosphorylated-Src, phosphorylated-FAK, and expression of matrix metalloproteinase (MMP) -2, MMP-9 and vimentin. It also significantly inhibited tumor growth without obvious side effects in the A375-bearing mice model by inducing apoptosis and reducing cell proliferation and metastasis. Notably, nifuroxazide significantly inhibited pulmonary metastases, which might be associated with the decrease of myeloid-derived suppressor cells (MDSCs). These findings suggested that nifuroxazide might be a potential agent for inhibiting the growth and metastasis of melanoma.


3D melanoma spheroid model for the development of positronium biomarkers.

  • Hanieh Karimi‎ et al.
  • Scientific reports‎
  • 2023‎

It was recently demonstrated that newly invented positronium imaging may be used for improving cancer diagnostics by providing additional information about tissue pathology with respect to the standardized uptake value currently available in positron emission tomography (PET). Positronium imaging utilizes the properties of positronium atoms, which are built from the electrons and positrons produced in the body during PET examinations. We hypothesized that positronium imaging would be sensitive to the in vitro discrimination of tumor-like three-dimensional structures (spheroids) built of melanoma cell lines with different cancer activities and biological properties. The lifetime of ortho-positronium (o-Ps) was evaluated in melanoma spheroids from two cell lines (WM266-4 and WM115) differing in the stage of malignancy. Additionally, we considered parameters such as the cell number, spheroid size and melanoma malignancy to evaluate their relationship with the o-Ps lifetime. We demonstrate pilot results for o-Ps lifetime measurement in extracellular matrix-free spheroids. With the statistical significance of two standard deviations, we demonstrated that the higher the degree of malignancy and the rate of proliferation of neoplastic cells, the shorter the lifetime of ortho-positronium. In particular, we observed the following indications encouraging further research: (i) WM266-4 spheroids characterized by a higher proliferation rate and malignancy showed a shorter o-Ps lifetime than WM115 spheroids characterized by a lower growth rate. (ii) Both cell lines showed a decrease in the lifetime of o-Ps after spheroid generation on day 8 compared to day 4 in culture, and the mean o-Ps lifetime was longer for spheroids formed from WM115 cells than for those formed from WM266-4 cells, regardless of spheroid age. The results of this study revealed that positronium is a promising biomarker that may be applied in PET diagnostics for the assessment of the degree of cancer malignancy.


MITF and BRN2 contribute to metastatic growth after dissemination of melanoma.

  • Jacinta L Simmons‎ et al.
  • Scientific reports‎
  • 2017‎

Melanoma tumors are highly heterogeneous, comprising of different cell types that vary in their potential for growth and invasion. Heterogeneous expression of the Microphthalmia-associated Transcription Factor (MITF) and the POU domain transcription factor BRN2 (POU3F2) has been found in malignant melanoma. Changing expression of these transcription factors as the disease progresses has been linked to the metastatic mechanism of phenotype switching. We therefore investigated the effects of MITF and BRN2 expression in melanoma growth and metastasis. Depletion of MITF resulted in a cell population that had a slowed cell cycle progression, was less invasive in vitro and had hindered tumor and metastasis forming ability in mouse xenograft studies. BRN2 depletion left a cell population with intact proliferation and invasion in vitro; however metastatic growth was significantly reduced in the mouse xenograft model. These results suggest that the proliferative population within melanoma tumors express MITF, and both MITF and BRN2 are important for metastatic growth in vivo. This finding highlights the importance of BRN2 and MITF expression in development of melanoma metastasis.


Antiproliferative Effects of 1α-OH-vitD3 in Malignant Melanoma: Potential Therapeutic implications.

  • Lucia Spath‎ et al.
  • Scientific reports‎
  • 2017‎

Early detection and surgery represent the mainstay of treatment for superficial melanoma, but for high risk lesions (Breslow's thickness >0.75 mm) an effective adjuvant therapy is lacking. Vitamin D insufficiency plays a relevant role in cancer biology. The biological effects of 1α hydroxycholecalciferol on experimental melanoma models were investigated. 105 melanoma patients were checked for 25-hydroxycholecalciferol (circulating vitamin D) serum levels. Human derived melanoma cell lines and in vivo xenografts were used for studying 1α-hydroxycholecalciferol-mediated biological effects on cell proliferation and tumor growth. 99 out of 105 (94%) melanoma patients had insufficient 25-hydroxycholecalciferol serum levels. Interestingly among the six with vitamin D in the normal range, five had a diagnosis of in situ/microinvasive melanoma. Treatment with 1α-hydroxycholecalciferol induced antiproliferative effects on melanoma cells in vitro and in vivo, modulating the expression of cell cycle key regulatory molecules. Cell cycle arrest in G1 or G2 phase was invariably observed in vitamin D treated melanoma cells. The antiproliferative activity induced by 1α-hydroxycholecalciferol in experimental melanoma models, together with the discovery of insufficient 25-hydroxycholecalciferol serum levels in melanoma patients, provide the rationale for using vitamin D in melanoma adjuvant therapy, alone or in association with other therapeutic options.


NAADP-Dependent Ca(2+) Signaling Controls Melanoma Progression, Metastatic Dissemination and Neoangiogenesis.

  • Annarita Favia‎ et al.
  • Scientific reports‎
  • 2016‎

A novel transduction pathway for the powerful angiogenic factor VEGF has been recently shown in endothelial cells to operate through NAADP-controlled intracellular release of Ca(2+). In the present report the possible involvement of NAADP-controlled Ca(2+) signaling in tumor vascularization, growth and metastatic dissemination was investigated in a murine model of VEGF-secreting melanoma. Mice implanted with B16 melanoma cells were treated with NAADP inhibitor Ned-19 every second day for 4 weeks and tumor growth, vascularization and metastatization were evaluated. Control specimens developed well vascularized tumors and lung metastases, whereas in Ned-19-treated mice tumor growth and vascularization as well as lung metastases were strongly inhibited. In vitro experiments showed that Ned-19 treatment controls the growth of B16 cells in vitro, their migratory ability, adhesive properties and VEGFR2 expression, indicating NAADP involvement in intercellular autocrine signaling. To this regard, Ca(2+) imaging experiments showed that the response of B16 cells to VEGF stimulation is NAADP-dependent. The whole of these observations indicate that NAADP-controlled Ca(2+) signaling can be relevant not only for neoangiogenesis but also for direct control of tumor cells.


Image analysis of cutaneous melanoma histology: a systematic review and meta-analysis.

  • Emily L Clarke‎ et al.
  • Scientific reports‎
  • 2023‎

The current subjective histopathological assessment of cutaneous melanoma is challenging. The application of image analysis algorithms to histological images may facilitate improvements in workflow and prognostication. To date, several individual algorithms applied to melanoma histological images have been reported with variations in approach and reported accuracies. Histological digital images can be created using a camera mounted on a light microscope, or through whole slide image (WSI) generation using a whole slide scanner. Before any such tool could be integrated into clinical workflow, the accuracy of the technology should be carefully evaluated and summarised. Therefore, the objective of this review was to evaluate the accuracy of existing image analysis algorithms applied to digital histological images of cutaneous melanoma. Database searching of PubMed and Embase from inception to 11th March 2022 was conducted alongside citation checking and examining reports from organisations. All studies reporting accuracy of any image analysis applied to histological images of cutaneous melanoma, were included. The reference standard was any histological assessment of haematoxylin and eosin-stained slides and/or immunohistochemical staining. Citations were independently deduplicated and screened by two review authors and disagreements were resolved through discussion. The data was extracted concerning study demographics; type of image analysis; type of reference standard; conditions included and test statistics to construct 2 × 2 tables. Data was extracted in accordance with our protocol and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses-Diagnostic Test Accuracy (PRISMA-DTA) Statement. A bivariate random-effects meta-analysis was used to estimate summary sensitivities and specificities with 95% confidence intervals (CI). Assessment of methodological quality was conducted using a tailored version of the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. The primary outcome was the pooled sensitivity and specificity of image analysis applied to cutaneous melanoma histological images. Sixteen studies were included in the systematic review, representing 4,888 specimens. Six studies were included in the meta-analysis. The mean sensitivity and specificity of automated image analysis algorithms applied to melanoma histological images was 90% (CI 82%, 95%) and 92% (CI 79%, 97%), respectively. Based on limited and heterogeneous data, image analysis appears to offer high accuracy when applied to histological images of cutaneous melanoma. However, given the early exploratory nature of these studies, further development work is necessary to improve their performance.


ALDH2 is a novel biomarker and exerts an inhibitory effect on melanoma.

  • Hua Lei‎ et al.
  • Scientific reports‎
  • 2024‎

Melanoma is a malignant skin tumor. This study aimed to explore and assess the effect of novel biomarkers on the progression of melanoma. Differently expressed genes (DEGs) were screened from GSE3189 and GSE46517 datasets of Gene Expression Omnibus database using GEO2R. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted based on the identified DEGs. Hub genes were identified and assessed using protein-protein interaction networks, principal component analysis, and receiver operating characteristic curves. Quantitative real-time polymerase chain reaction was employed to measure the mRNA expression levels. TIMER revealed the association between aldehyde dehydrogenase 2 (ALDH2) and tumor immune microenvironment. The viability, proliferation, migration, and invasion were detected by cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing, and transwell assays. Total 241 common DEGs were screened out from GSE3189 and GSE46517 datasets. We determined 6 hub genes with high prediction values for melanoma, which could distinguish tumor samples from normal samples. ALDH2, ADH1B, ALDH3A2, DPT, EPHX2, and GATM were down-regulated in A375 and SK-MEL-2 cells, compared with the human normal melanin cell line (PIG1 cells). ALDH2 was selected as the candidate gene in this research, presenting a high diagnostic and predictive value for melanoma. ALDH2 had a positive correlation with the infiltrating levels of immune cells in melanoma microenvironment. Overexpression of ALDH2 inhibited cell viability, proliferation, migration, and invasion of A375/SK-MEL-2 cells. ALDH2 is a new gene biomarker of melanoma, which exerts an inhibitory effect on melanoma.


Biochemical and proteomic characterization of retrovirus Gag based microparticles carrying melanoma antigens.

  • Reet Kurg‎ et al.
  • Scientific reports‎
  • 2016‎

Extracellular vesicles are membraneous particles released by a variety of cells into the extracellular microenvironment. Retroviruses utilize the cellular vesiculation pathway for virus budding/assembly and the retrovirus Gag protein induces the spontaneous formation of microvesicles or virus-like particles (VLPs) when expressed in the mammalian cells. In this study, five different melanoma antigens, MAGEA4, MAGEA10, MART1, TRP1 and MCAM, were incorporated into the VLPs and their localization within the particles was determined. Our data show that the MAGEA4 and MAGEA10 proteins as well as MCAM are expressed on the surface of VLPs. The compartmentalization of exogenously expressed cancer antigens within the VLPs did not depend on the localization of the protein within the cell. Comparison of the protein content of VLPs by LC-MS/MS-based label-free quantitative proteomics showed that VLPs carrying different cancer antigens are very similar to each other, but differ to some extent from VLPs without recombinant antigen. We suggest that retrovirus Gag based virus-like particles carrying recombinant antigens have a potential to be used in cancer immunotherapy.


Exhaustion of CD4+ T-cells mediated by the Kynurenine Pathway in Melanoma.

  • Soudabeh Rad Pour‎ et al.
  • Scientific reports‎
  • 2019‎

Kynurenine pathway (KP) activation by the enzymatic activity of indoleamine 2,3-dioxygenase1 (IDO1) and kynurenine (KYN) production represents an attractive target for reducing tumour progression and improving anti-tumour immunity in multiple cancers. However, immunomodulatory properties of other KP metabolites such as 3-hydroxy kynurenine (3-HK) and kynurenic acid (KYNA) are poorly understood. The association of the kynurenine metabolic pathway with T-cell status in the tumour microenvironment were characterized, using gene expression data of 368 cutaneous skin melanoma (SKCM) patients from the TCGA cohort. Based on the identified correlations, we characterized the production of KYN, 3-HK, and KYNA in vitro using melanoma-derived cell lines and primary CD4+ CD25- T-cells. Activation of the CD4+ T-cells produced IFNγ, which yielded increased levels of KYN and KYNA. Concurrently, kynurenine 3-monooxygenase (KMO) expression and proliferation of CD4+ T-cells were reduced, whereas exhaustion markers such as PD-L1, AHR, FOXP3, and CTLA4 were increased. Additionally, an analysis of the correlation network reconstructed using TCGA-SKCM emphasized KMO and KYNU with high variability among BRAF wild-type compared with V600E, which underscored their role in distinct CD4+ T-cell behavior in tumour immunity. Our results suggest that, in addition to IDO1, there is an alternative immune regulatory mechanism associated with the lower KMO expression and the higher KYNA production, which contributes to dysfunctional effector CD4+ T-cell response.


Ensemble Modeling Approach Targeting Heterogeneous RNA-Seq data: Application to Melanoma Pseudogenes.

  • Enrico Capobianco‎ et al.
  • Scientific reports‎
  • 2017‎

We studied the transcriptome landscape of skin cutaneous melanoma (SKCM) using 103 primary tumor samples from TCGA, and measured the expression levels of both protein coding genes and non-coding RNAs (ncRNAs). In particular, we emphasized pseudogenes potentially relevant to this cancer. While cataloguing the profiles based on the known biotypes, all the employed RNA-Seq methods generated just a small consensus of significant biotypes. We thus designed an approach to reconcile the profiles from all methods following a simple strategy: we selected genes that were confirmed as differentially expressed by the ensemble predictions obtained in a regression model. The main advantages of this approach are: 1) Selection of a high-confidence gene set identifying relevant pathways; 2) Use of a regression model whose covariates embed all method-driven outcomes to predict an averaged profile; 3) Method-specific assessment of prediction power and significance. Furthermore, the approach can be generalized to any biological system for which noisy RNA-Seq profiles are computed. As our analyses concerned bio-annotations of both high-quality protein coding genes and ncRNAs, we considered the associations between pseudogenes and parental genes (targets). Among the candidate targets that were validated, we identified PINK1, which is studied in patients with Parkinson and cancer (especially melanoma).


Mechanisms and immunogenicity of nsPEF-induced cell death in B16F10 melanoma tumors.

  • Alessandra Rossi‎ et al.
  • Scientific reports‎
  • 2019‎

Accumulating data indicates that some cancer treatments can restore anticancer immunosurveillance through the induction of tumor immunogenic cell death (ICD). Nanosecond pulsed electric fields (nsPEF) have been shown to efficiently ablate melanoma tumors. In this study we investigated the mechanisms and immunogenicity of nsPEF-induced cell death in B16F10 melanoma tumors. Our data show that in vitro nsPEF (20-200, 200-ns pulses, 7 kV/cm, 2 Hz) caused a rapid dose-dependent cell death which was not accompanied by caspase activation or PARP cleavage. The lack of nsPEF-induced apoptosis was confirmed in vivo in B16F10 tumors. NsPEF also failed to trigger ICD-linked responses such as necroptosis and autophagy. Our results point at necrosis as the primary mechanism of cell death induced by nsPEF in B16F10 cells. We finally compared the antitumor immunity in animals treated with nsPEF (750, 200-ns, 25 kV/cm, 2 Hz) with animals were tumors were surgically removed. Compared to the naïve group where all animals developed tumors, nsPEF and surgery protected 33% (6/18) and 28.6% (4/14) of the animals, respectively. Our data suggest that, under our experimental conditions, the local ablation by nsPEF restored but did not boost the natural antitumor immunity which stays dormant in the tumor-bearing host.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: