Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection.

  • Matthew D Greseth‎ et al.
  • PLoS pathogens‎
  • 2014‎

The poxvirus life cycle, although physically autonomous from the host nucleus, is nevertheless dependent upon cellular functions. A requirement for de novo fatty acid biosynthesis was implied by our previous demonstration that cerulenin, a fatty acid synthase inhibitor, impaired vaccinia virus production. Here we show that additional inhibitors of this pathway, TOFA and C75, reduce viral yield significantly, with partial rescue provided by exogenous palmitate, the pathway's end-product. Palmitate's major role during infection is not for phospholipid synthesis or protein palmitoylation. Instead, the mitochondrial import and β-oxidation of palmitate are essential, as shown by the impact of etomoxir and trimetazidine, which target these two processes respectively. Moreover, the impact of these inhibitors is exacerbated in the absence of exogenous glucose, which is otherwise dispensable for infection. In contrast to glucose, glutamine is essential for productive viral infection, providing intermediates that sustain the TCA cycle (anaplerosis). Cumulatively, these data suggest that productive infection requires the mitochondrial β-oxidation of palmitate which drives the TCA cycle and energy production. Additionally, infection causes a significant rise in the cellular oxygen consumption rate (ATP synthesis) that is ablated by etomoxir. The biochemical progression of the vaccinia life cycle is not impaired in the presence of TOFA, C75, or etomoxir, although the levels of viral DNA and proteins synthesized are somewhat diminished. However, by reversibly arresting infections at the onset of morphogenesis, and then monitoring virus production after release of the block, we determined that virion assembly is highly sensitive to TOFA and C75. Electron microscopic analysis of cells released into C75 revealed fragmented aggregates of viroplasm which failed to be enclosed by developing virion membranes. Taken together, these data indicate that vaccinia infection, and in particular virion assembly, relies on the synthesis and mitochondrial import of fatty acids, where their β-oxidation drives robust ATP production.


Secreted bacterial effectors that inhibit host protein synthesis are critical for induction of the innate immune response to virulent Legionella pneumophila.

  • Mary F Fontana‎ et al.
  • PLoS pathogens‎
  • 2011‎

The intracellular bacterial pathogen Legionella pneumophila causes an inflammatory pneumonia called Legionnaires' Disease. For virulence, L. pneumophila requires a Dot/Icm type IV secretion system that translocates bacterial effectors to the host cytosol. L. pneumophila lacking the Dot/Icm system is recognized by Toll-like receptors (TLRs), leading to a canonical NF-κB-dependent transcriptional response. In addition, L. pneumophila expressing a functional Dot/Icm system potently induces unique transcriptional targets, including proinflammatory genes such as Il23a and Csf2. Here we demonstrate that this Dot/Icm-dependent response, which we term the effector-triggered response (ETR), requires five translocated bacterial effectors that inhibit host protein synthesis. Upon infection of macrophages with virulent L. pneumophila, these five effectors caused a global decrease in host translation, thereby preventing synthesis of IκB, an inhibitor of the NF-κB transcription factor. Thus, macrophages infected with wildtype L. pneumophila exhibited prolonged activation of NF-κB, which was associated with transcription of ETR target genes such as Il23a and Csf2. L. pneumophila mutants lacking the five effectors still activated TLRs and NF-κB, but because the mutants permitted normal IκB synthesis, NF-κB activation was more transient and was not sufficient to fully induce the ETR. L. pneumophila mutants expressing enzymatically inactive effectors were also unable to fully induce the ETR, whereas multiple compounds or bacterial toxins that inhibit host protein synthesis via distinct mechanisms recapitulated the ETR when administered with TLR ligands. Previous studies have demonstrated that the host response to bacterial infection is induced primarily by specific microbial molecules that activate TLRs or cytosolic pattern recognition receptors. Our results add to this model by providing a striking illustration of how the host immune response to a virulent pathogen can also be shaped by pathogen-encoded activities, such as inhibition of host protein synthesis.


Crystal structure of Middle East respiratory syndrome coronavirus helicase.

  • Wei Hao‎ et al.
  • PLoS pathogens‎
  • 2017‎

Middle East respiratory syndrome coronavirus (MERS-CoV) remains a threat to public health worldwide; however, effective vaccine or drug against CoVs remains unavailable. CoV helicase is one of the three evolutionary most conserved proteins in nidoviruses, thus making it an important target for drug development. We report here the first structure of full-length coronavirus helicase, MERS-CoV nsp13. MERS-CoV helicase has multiple domains, including an N-terminal Cys/His rich domain (CH) with three zinc atoms, a beta-barrel domain and a C-terminal SF1 helicase core with two RecA-like subdomains. Our structural analyses show that while the domain organization of nsp13 is conserved throughout nidoviruses, the individual domains of nsp13 are closely related to the equivalent eukaryotic domains of Upf1 helicases. The most distinctive feature differentiating CoV helicases from eukaryotic Upf1 helicases is the interaction between CH domain and helicase core.


Low-dose IL-2 therapy invigorates CD8+ T cells for viral control in systemic lupus erythematosus.

  • Pengcheng Zhou‎ et al.
  • PLoS pathogens‎
  • 2021‎

Autoimmune diseases are often treated by glucocorticoids and immunosuppressive drugs that could increase the risk for infection, which in turn deteriorate disease and cause mortality. Low-dose IL-2 (Ld-IL2) therapy emerges as a new treatment for a wide range of autoimmune diseases. To examine its influence on infection, we retrospectively studied 665 patients with systemic lupus erythematosus (SLE) including about one third receiving Ld-IL2 therapy, where Ld-IL2 therapy was found beneficial in reducing the incidence of infections. In line with this clinical observation, IL-2 treatment accelerated viral clearance in mice infected with influenza A virus or lymphocytic choriomeningitis virus (LCMV). Noticeably, despite enhancing anti-viral immunity in LCMV infection, IL-2 treatment exacerbated CD8+ T cell-mediated immunopathology. In summary, Ld-IL2 therapy reduced the risk of infections in SLE patients and enhanced the control of viral infection, but caution should be taken to avoid potential CD8+ T cell-mediated immunopathology.


Klebsiella pneumoniae causes bacteremia using factors that mediate tissue-specific fitness and resistance to oxidative stress.

  • Caitlyn L Holmes‎ et al.
  • PLoS pathogens‎
  • 2023‎

Gram-negative bacteremia is a major cause of global morbidity involving three phases of pathogenesis: initial site infection, dissemination, and survival in the blood and filtering organs. Klebsiella pneumoniae is a leading cause of bacteremia and pneumonia is often the initial infection. In the lung, K. pneumoniae relies on many factors like capsular polysaccharide and branched chain amino acid biosynthesis for virulence and fitness. However, mechanisms directly enabling bloodstream fitness are unclear. Here, we performed transposon insertion sequencing (TnSeq) in a tail-vein injection model of bacteremia and identified 58 K. pneumoniae bloodstream fitness genes. These factors are diverse and represent a variety of cellular processes. In vivo validation revealed tissue-specific mechanisms by which distinct factors support bacteremia. ArnD, involved in Lipid A modification, was required across blood filtering organs and supported resistance to soluble splenic factors. The purine biosynthesis enzyme PurD supported liver fitness in vivo and was required for replication in serum. PdxA, a member of the endogenous vitamin B6 biosynthesis pathway, optimized replication in serum and lung fitness. The stringent response regulator SspA was required for splenic fitness yet was dispensable in the liver. In a bacteremic pneumonia model that incorporates initial site infection and dissemination, splenic fitness defects were enhanced. ArnD, PurD, DsbA, SspA, and PdxA increased fitness across bacteremia phases and each demonstrated unique fitness dynamics within compartments in this model. SspA and PdxA enhanced K. pnuemoniae resistance to oxidative stress. SspA, but not PdxA, specifically resists oxidative stress produced by NADPH oxidase Nox2 in the lung, spleen, and liver, as it was a fitness factor in wild-type but not Nox2-deficient (Cybb-/-) mice. These results identify site-specific fitness factors that act during the progression of Gram-negative bacteremia. Defining K. pneumoniae fitness strategies across bacteremia phases could illuminate therapeutic targets that prevent infection and sepsis.


CBS-derived H2S facilitates host colonization of Vibrio cholerae by promoting the iron-dependent catalase activity of KatB.

  • Yao Ma‎ et al.
  • PLoS pathogens‎
  • 2021‎

Sensing and resisting oxidative stress is critical for Vibrio cholerae to survive in either the aquatic environment or the gastrointestinal tract. Previous studies mainly focused on the mechanisms of oxidative stress response regulation that rely on enzymatic antioxidant systems, while functions of non-enzymatic antioxidants are rarely discussed in V. cholerae. For the first time, we investigated the role of hydrogen sulfide (H2S), the simplest thiol compound, in protecting V. cholerae against oxidative stress. We found that degradation of L-cysteine by putative cystathionine β-synthase (CBS) is the major source of endogenous H2S in V. cholerae. Our results indicate that intracellular H2S level has a positive correlation with cbs expression, while the enhanced H2S production can render V. cholerae cells less susceptible to H2O2 in vitro. Using proteome analysis and real-time qPCR assay, we found that cbs expression could stimulate the expression of several enzymatic antioxidants, including reactive oxygen species (ROS) detoxifying enzymes SodB, KatG and AhpC, the DNA protective protein DPS and the protein redox regulator Trx1. Assays of ROS detoxification capacities revealed that CBS-derived H2S could promote catalase activity at the post-translational level, especially for KatB, which serves as an important way that endogenous H2S participates in H2O2 detoxification. The enhancement of catalase activity by H2S is achieved through facilitating the uptake of iron. Adult mice experiments showed that cbs mutant has colonization defect, while either complementation of cbs or exogenous supplement of N-Acetyl-L-Cysteine restores its fitness in the host environment. Herein, we proposed that V. cholerae regulates CBS-dependent H2S production for better survival and proliferation under ROS stress.


Trophozoite fitness dictates the intestinal epithelial cell response to Giardia intestinalis infection.

  • Jana Grüttner‎ et al.
  • PLoS pathogens‎
  • 2023‎

Giardia intestinalis is a non-invasive, protozoan parasite infecting the upper small intestine of most mammals. Symptomatic infections cause the diarrhoeal disease giardiasis in humans and animals, but at least half of the infections are asymptomatic. However, the molecular underpinnings of these different outcomes of the infection are still poorly defined. Here, we studied the early transcriptional response to G. intestinalis trophozoites, the disease-causing life-cycle stage, in human enteroid-derived, 2-dimensional intestinal epithelial cell (IEC) monolayers. Trophozoites preconditioned in media that maximise parasite fitness triggered only neglectable inflammatory transcription in the IECs during the first hours of co-incubation. By sharp contrast, "non-fit" or lysed trophozoites induced a vigorous IEC transcriptional response, including high up-regulation of many inflammatory cytokines and chemokines. Furthermore, "fit" trophozoites could even suppress the stimulatory effect of lysed trophozoites in mixed infections, suggesting active G. intestinalis suppression of the IEC response. By dual-species RNA-sequencing, we defined the IEC and G. intestinalis gene expression programs associated with these differential outcomes of the infection. Taken together, our results inform on how G. intestinalis infection can lead to such highly variable effects on the host, and pinpoints trophozoite fitness as a key determinant of the IEC response to this common parasite.


Dps-dependent in vivo mutation enhances long-term host adaptation in Vibrio cholerae.

  • Mei Luo‎ et al.
  • PLoS pathogens‎
  • 2023‎

As one of the most successful pathogenic organisms, Vibrio cholerae (V. cholerae) has evolved sophisticated regulatory mechanisms to overcome host stress. During long-term colonization by V. cholerae in adult mice, many spontaneous nonmotile mutants (approximately 10% at the fifth day post-infection) were identified. These mutations occurred primarily in conserved regions of the flagellar regulator genes flrA, flrC, and rpoN, as shown by Sanger and next-generation sequencing, and significantly increased fitness during colonization in adult mice. Intriguingly, instead of key genes in DNA repair systems (mutS, nfo, xthA, uvrA) or ROS and RNS scavenging systems (katG, prxA, hmpA), which were generally thought to be associated with bacterial mutagenesis, we found that deletion of the cyclin gene dps significantly increased the mutation rate (up to 53% at the fifth day post-infection) in V. cholerae. We further determined that the dpsD65A and dpsF46E point mutants showed a similar mutagenesis profile as the Δdps mutant during long-term colonization in mice, which strongly indicated that the antioxidative function of Dps directly contributes to the development of V. cholerae nonmotile mutants. Methionine metabolism pathway may be one of the mechanism for ΔflrA, ΔflrC and ΔrpoN mutant increased colonization in adult mice. Our results revealed a new phenotype in which increased fitness of V. cholerae in the host gut via spontaneous production nonmotile mutants regulated by cyclin Dps, which may represent a novel adaptation strategy for directed evolution of pathogens in the host.


Interplay of Trypanosome Lytic Factor and innate immune cells in the resolution of cutaneous Leishmania infection.

  • Jyoti Pant‎ et al.
  • PLoS pathogens‎
  • 2021‎

Trypanosome Lytic Factor (TLF) is a primate-specific high-density lipoprotein (HDL) complex that, through the cation channel-forming protein apolipoprotein L-1 (APOL1), provides innate immunity to select kinetoplastid parasites. The immunoprotective effects of TLF have been extensively investigated in the context of its interaction with the extracellular protozoan Trypanosoma brucei brucei, to which it confers sterile immunity. We previously showed that TLF could act against an intracellular pathogen Leishmania, and here we dissected the role of TLF and its synergy with host-immune cells. Leishmania major is transmitted by Phlebotomine sand flies, which deposit the parasite intradermally into mammalian hosts, where neutrophils are the predominant phagocytes recruited to the site of infection. Once in the host, the parasites are phagocytosed and shed their surface glycoconjugates during differentiation to the mammalian-resident amastigote stage. Our data show that mice producing TLF have reduced parasite burdens when infected intradermally with metacyclic promastigotes of L. major, the infective, fly-transmitted stage. This TLF-mediated reduction in parasite burden was lost in neutrophil-depleted mice, suggesting that early recruitment of neutrophils is required for TLF-mediated killing of L. major. In vitro we find that only metacyclic promastigotes co-incubated with TLF in an acidic milieu were lysed. However, amastigotes were not killed by TLF at any pH. These findings correlated with binding experiments, revealing that labeled TLF binds specifically to the surface of metacyclic promastigotes, but not to amastigotes. Metacyclic promastigotes of L. major deficient in the synthesis of surface glycoconjugates LPG and/or PPG (lpg1- and lpg5A-/lpg5B- respectively) whose absence mimics the amastigote surface, were resistant to TLF-mediated lysis. We propose that TLF binds to the outer surface glycoconjugates of metacyclic promastigotes, whereupon it kills the parasite in the acidic phagosome of phagocytes. We hypothesize that resistance to TLF requires shedding of the surface glycoconjugates, which occurs several hours after phagocytosis by immune cells, creating a relatively short-lived but effective window for TLF to act against Leishmania.


CMPK2 restricts Zika virus replication by inhibiting viral translation.

  • Joanna B Pawlak‎ et al.
  • PLoS pathogens‎
  • 2023‎

Flaviviruses continue to emerge as global health threats. There are currently no Food and Drug Administration (FDA) approved antiviral treatments for flaviviral infections. Therefore, there is a pressing need to identify host and viral factors that can be targeted for effective therapeutic intervention. Type I interferon (IFN-I) production in response to microbial products is one of the host's first line of defense against invading pathogens. Cytidine/uridine monophosphate kinase 2 (CMPK2) is a type I interferon-stimulated gene (ISG) that exerts antiviral effects. However, the molecular mechanism by which CMPK2 inhibits viral replication is unclear. Here, we report that CMPK2 expression restricts Zika virus (ZIKV) replication by specifically inhibiting viral translation and that IFN-I- induced CMPK2 contributes significantly to the overall antiviral response against ZIKV. We demonstrate that expression of CMPK2 results in a significant decrease in the replication of other pathogenic flaviviruses including dengue virus (DENV-2), Kunjin virus (KUNV) and yellow fever virus (YFV). Importantly, we determine that the N-terminal domain (NTD) of CMPK2, which lacks kinase activity, is sufficient to restrict viral translation. Thus, its kinase function is not required for CMPK2's antiviral activity. Furthermore, we identify seven conserved cysteine residues within the NTD as critical for CMPK2 antiviral activity. Thus, these residues may form an unknown functional site in the NTD of CMPK2 contributing to its antiviral function. Finally, we show that mitochondrial localization of CMPK2 is required for its antiviral effects. Given its broad antiviral activity against flaviviruses, CMPK2 is a promising potential pan-flavivirus inhibitor.


Destruction of the vascular viral receptor in infectious salmon anaemia provides in vivo evidence of homologous attachment interference.

  • Maria Aamelfot‎ et al.
  • PLoS pathogens‎
  • 2022‎

Viral interference is a process where infection with one virus prevents a subsequent infection with the same or a different virus. This is believed to limit superinfection, promote viral genome stability, and protect the host from overwhelming infection. Mechanisms of viral interference have been extensively studied in plants, but remain poorly understood in vertebrates. We demonstrate that infection with infectious salmon anaemia virus (ISAV) strongly reduces homologous viral attachment to the Atlantic salmon, Salmo salar L. vascular surface. A generalised loss of ISAV binding was observed after infection with both high-virulent and low-virulent ISAV isolates, but with different kinetics. The loss of ISAV binding was accompanied by an increased susceptibility to sialidase, suggesting a loss of the vascular 4-O-sialyl-acetylation that mediates ISAV attachment and simultaneously protects the sialic acid from cleavage. Moreover, the ISAV binding capacity of cultured cells dramatically declined 3 days after ISAV infection, accompanied by reduced cellular permissiveness to infection with a second antigenically distinct isolate. In contrast, neither infection with infectious haematopoietic necrosis virus nor stimulation with the viral mimetic poly I:C restricted subsequent cellular ISAV attachment, revealing an ISAV-specific mechanism rather than a general cellular antiviral response. Our study demonstrates homologous ISAV attachment interference by de-acetylation of sialic acids on the vascular surface. This is the first time the kinetics of viral receptor destruction have been mapped throughout the full course of an infection, and the first report of homologous attachment interference by the loss of a vascular viral receptor. Little is known about the biological functions of vascular O-sialyl-acetylation. Our findings raise the question of whether this vascular surface modulation could be linked to the breakdown of central vascular functions that characterises infectious salmon anaemia.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: